Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do a // b nên ta có:
\(\widehat{A_1}=\widehat{A_3}=54^0(đối đỉnh)\)
\(\widehat{A_3}+\widehat{A_2}=180^0\)
\(\Rightarrow\)\(\widehat{A_2}=180^0-54^0=126^0\)
a)\(\widehat{B_2}=\widehat{A_3}=54^0(đồng vị)\)
b)\(\widehat{A_2}=\widehat{A_4}=126^0(đối đỉnh)\)
\(\Rightarrow\)\(\widehat{A_4}=\widehat{B_3}=126^0(đồng vị)\)
\(\widehat{A_1}<\widehat{B_3}(54^0<126^0)\)
c)\(\widehat{A_4}+\widehat{B_2}=126^0+54^0=180^0\)
\(a)\)
b) U1 + V1= 180o (kề bù)
V1= 180o -U1 = 180o - 36o= 144o
U2 = V1 (đồng vị)
=> U2= 144o
Vậy V1= U2= 144o
A1=55o (đồng vị); A2=180o-55o=125o (kề bù với A1); A3=55o (đối đỉnh với A1); A4=125o (đối đỉnh với A2);
B2=125o (đồng vị với A2); B3=55o (đối đỉnh với B1); B4=125o (đối đỉnh với B2)
1.Ta có :
\(\left\{{}\begin{matrix}m\perp c\\n\perp c\end{matrix}\right.\Rightarrow m//n\)
2. \(\widehat{A_1}=\widehat{A_3}=120^o\)(2 góc đối đỉnh)
Do m // n
\(\Rightarrow\widehat{A_3}=\widehat{B_3}=120^o\)(2 góc đồng vị)
\(\widehat{B_2}+\widehat{B_3}=180^o\)(2 góc kề bù)
\(\Rightarrow\widehat{B_2}+120^o=180^o\\ \Rightarrow\widehat{B_2}=60^o\)
\(\widehat{ABb}=180^o-\widehat{B_2}\) ( vì là hai góc kề bù )
\(\Rightarrow\widehat{ABb}=180^o-108^o=72^o\)
Ta có \(\widehat{A_1}=\widehat{ABb}=72^o\)
mà hai góc ở vị trí đồng vị
\(\Rightarrow a//b\)