Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AB=DC=8cm
Xét ΔADC vuông tại A có cosD=AD/DC
=>AD=3,38(cm)
b: Xét ΔCAB vuông tại C và ΔHAD vuông tại H có
góc CAB=góc HAD(=góc ACD)
=>ΔCAB đồng dạng với ΔHAD
=>CA/HA=CB/HD
=>CA*HD=CB*HA
Từ B kẻ đường cao BH vuông góc với CD tại H. Đặt HC = x cm (x>0)
Ta có AB = DH = \(2\sqrt{3}\)
Áp dụng định lí Pytago : \(BH=\sqrt{BC^2-HC^2}=\sqrt{6^2-x^2}\) (cm)
=> \(AD=BH=\sqrt{6^2-x^2}\) (cm)
Lại có \(AD=tan30^o\times CD\) hay \(\sqrt{36-x^2}=\frac{\sqrt{3}}{3}.\left(2\sqrt{3}+x\right)\Leftrightarrow36-x^2=\frac{12+x^2+4\sqrt{3}}{3}\)
\(\Leftrightarrow\frac{4x^2}{3}=\frac{96-4\sqrt{3}}{3}\Rightarrow x=24-\sqrt{3}\)
Vậy \(CD=2\sqrt{3}+x=2\sqrt{3}+24-\sqrt{3}=24+\sqrt{3}\) (cm)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Ta cóBDA+ADC=BDC 10\(^o\)+50\(^o\)=60\(^o\)
Xét tam giác ADCvuông tại C:
\(AC=CD.tanADC\)
\(\Rightarrow AC=40.tan50^o\)
\(\Leftrightarrow AC\approx47,67cm\)
Xét tam giác BDC vuông tại C có:
\(CB=CD.\tan BDC\)
\(\Rightarrow CB=40.tan60^o\)
\(\Leftrightarrow CB\approx69,28cm\)
Ta có \(AB=BC-AC=69,28-47,67=21,61cm\)