Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Bài này vế trái mình đã giải 1 lần rồi bạn.
Bạn dùng hằng đẳng thức A3 + B3 = (A + B)3 - 3AB(A + B) để có kết quả (a-b)(b-c)(c-a) = 70
70 = 2.5.7 do đó suy ra a-b=2, b-c=5, c-a=7. Suy ra A = 14.
Vì A là tổng 3 giá trị tuyệt đối nên nếu có hoán vị a-b, b-c, c-a thì kết quả vẫn ko đổi
Bài 2 câu c mình cũng có giải rồi ko nhớ bạn của bạn nào. Bạn xem lại nhé
Còn câu b) : Gọi K là giao điểm của EM và BC thị EK vuông góc với BC vì M là trực tâm tam giác EBC. Sau đó bạn cm BM.BD = BK.BC ; CM.CA = CK.CB. Bạn cộng từng vế là ra BM.BD + CM.CA = BC2 ko đổi
Bài 1:
a) 2x(x2 - 3x + 4)
= 2x3 - 6x2 + 8x
b) (x + 2)(x - 1)
= x2 - x + 2x - 2
= x2 + x - 2
c) (4x4 - 2x3 + 6x2) : 2x
= 2x3 - x2 + 3x
Bài 2:
a) 2x2 - 6x
= 2x(x - 3)
b) 2x2 - 18
= 2(x2 - 9)
= 2(x - 3)(x + 3)
c) x3 + 3x2 + x + 3
= x2(x + 3) + (x + 3)
= (x + 3)(x2 + 1)
Bài 1 :
a) \(2x\left(x^2-3x+4\right)\)
= \(2x^3-6x^2+8x\)
b) \(\left(x+2\right)\left(x-1\right)\)
\(=x^2-x+2x-2\)
\(=x^2-x-2\)
Bài 2 :
a) \(2x^2-6x\)
\(=2x\left(x-3\right)\)
b) \(2x^2-18\)
\(=2\left(x^2-9\right)\)
\(=2\left(x-3\right)\left(x+3\right)\)
c) \(x^3+3x^2+x+3\)
\(=\left(x^3+3x^2\right)\left(x+3\right)\)
\(=x^2\left(x+3\right)\left(x+3\right)\)
\(=\left(x^2+1\right)\left(x+3\right)\)
Bài 3 :
a) \(\dfrac{5x}{x-1}+\dfrac{-5}{x-1}=\dfrac{5x+\left(-5\right)}{x-1}=\dfrac{5\left(x-1\right)}{x-1}=5\)
b) \(\dfrac{1}{x-3}+\dfrac{2}{x+3}+\dfrac{9-x}{x^2-9}\)
\(=\dfrac{1}{x-3}+\dfrac{2}{x+3}+\dfrac{9-x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{2x-6}{\left(x-3\right)\left(x+3\right)}+\dfrac{9-x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x+3+2x-6+9-x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x+6}{\left(x-3\right)\left(x+3\right)}=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\)
Bài 1: Phân tích các đa thức sau thành nhân tử:
a, 2020x2 - 2019x -1
= 2020x2 - 2020x + x - 1
= 2020x(x - 1) + (x - 1)
= (2020x + 1)(x - 1)
b, x(x+4)(x+6)(x+10) +128
=(x2 +10x)(x2 + 10x + 24) + 128 (*)
Đặt x2 + 10x = a. Thay vào (*) ta được:
a(a + 24) + 128
= a2 + 24a +128
= a2 + 8a + 16a + 128
= a(a + 8) + 16(a + 8)
= (a + 16)(a + 8)
= (x2 + 10x +16)(x2 + 10x + 8)
= (x2 + 2x + 8x + 16)(x2 + 2x5 + 52) -17
= [x(x + 2) + 8(x + 2)](x + 5)2 - 17
= (x + 8)(x + 2)(x + 5)2 - 17
Chọn A