K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

 

Cho hình vẽ, biết :

a) T a  có:   A ^ 1 = A ^ 2 = 70 0 (đối đỉnh). 

Do đó  A ^ 1 + B ^ = 70 0 + 110 0 = 180 0  

Suy ra Ax//By (vì có cặp góc trong cùng phía bù nhau). 

b) Ta có: F ^ = H ^ 1 ;   K ^ = H ^ 2  mµ  H ^ 1 = H ^ 2 ( đối đỉnh)

 nên F ^ = K ^ . Suy ra  EF//IK( vì có cặp góc so le trong bằng nhau).

Ta có : M ^ 1 = P ^ 1 = 75 0 .

 

Suy ra a//c( vì có cặp góc đồng vị bằng nhau)

Ta có:

b N P ^  kÒ bï víi gãc N 1 , d o  ®ã: b N P ^ = 180 0 − 105 0 = 75 0 VËy  b N P ^ = P 1 ^ = 70 0

 

Suy ra b//c (vì có cặp góc đồng vị bằng nhau)

 

3 tháng 4 2017

Q(2)=a.22+b.2+c=a.4+b.2+c

Q(-1)=a.(-1)2+b.(-1)+c=a-b+c

Ta có Q(2)+Q(-1)=4a+2b+c+a-b+c=5a+b+2c=0

Như vậy Q(2) và Q(-1) là 2 số đối nhau

=> Tích của chúng luôn nhỏ hơn hoặc bằng 0 ( Bằng 0 khi cả 2 số đều bằng 0)

b) Q(x)=0 với mọi x

=>Q(0)=a.02+b.0+c=0

=>0+0+c=0

=>c=0

Q(1)=a.12+b.1+c=a+b+c=0

Theo câu a, ta có Q(-1)=a-b+c=0 ( vì giả thiết cho đa thức =0 với mọi x)

=>Q(1)-Q(-1)=a+b+c-(a-b+c)=a+b+c-a+b-c=0

=>2b=0

=>b=0

Thay b=0 và c=0 vào đa thức Q(1) ta có a+0+0=0

=>a=0

Vậy a=b=c=0

a) Ta có : \(Q\left(2\right)=4a+2b+c\)

\(Q\left(-1\right)=a-b+c\)

\(\Rightarrow Q\left(2\right)+Q\left(-1\right)=5a+b+2c=0\)

\(\Rightarrow Q\left(2\right)=-Q\left(-1\right)\)

\(\Rightarrow Q\left(2\right).Q\left(-1\right)\le0\)

b) Vì \(Q\left(x\right)=0\) với mọi $x$

$\to Q(0) = c=0$

$Q(1) = a+b+c=a+b=0$ $(1)$

$Q(-1) = a-b +c = a-b=0$ $(2)$

Từ $(1)$ và $(2)$ $\to a=b=c=0$

12 tháng 12 2018

Nguyễn Việt Lâm Trần Trung Nguyên tran nguyen bao quan Shurima Azir Nguyễn Thanh Hằng Mysterious Person Phùng Khánh Linh Aki Tsuki

12 tháng 12 2018

a) f(0)=0 ---> x = 0

mà y= f(x) = ax --> y= a.0=0

b) ta có: f(x) = ax

mà f(x1)/x1 = f(x2)/x2

--> ax1/x1 = ax2/x2

--> a=a --> a-a = 0

Chắc sai nhưng t nghĩ là làm vậy :vv

27 tháng 5 2016

a,Q(2) = 4a+2b+c

Q(-1)=a-b+c

Ta có: Q(2)+Q(-1)= 4a+2b+c+a-b+c=5a+b+2c

mà 5a+b+2c=0 => Q(2)=-Q(-1)

Nên Q(2).Q(-1)\(\le\)0

 

28 tháng 5 2016

Vì Q(x)=0 với mọi x nên ta có:

Q(0)= 0.a+b.0+c=0=> c=0(1)

Q(1)= a+b+c=0 mà c=0 => a+b=0(2)

Q(-1)=a-b+c=0 mà c=0 => a-b=0(3)

từ (1) và (2) => a=b=c=0 khi Q(x)=0 với mọi x

AH
Akai Haruma
Giáo viên
5 tháng 7 2020

Lời giải:

Ta có:

$f(-1)=a-b+c$

$f(2)=4a+2b+c$

Cộng lại ta có: $f(-1)+f(2)=5a+b+2c=0$

$\Rightarrow f(-1)=-f(2)$

$\Rightarrow f(-1)f(2)=-f(2)^2\leq 0$ (đpcm)

7 tháng 5 2015

Tính H(-1) = a.(-1)2 + b.(-1) + c = a - b + c

H(-2) = a.(-2)2 + b.(-2) + c = 4a - 2b + c

=> H(-1) + H(-2) = 5a - 3b + 2c = 0 

=> H(-1) = - H(-2)

=> H(-1) . H(-2) = [- H(-2)].h(-2) = - H2(-2) \(\le\) 0 Vì H2(-2) \(\ge\) 0

=> ĐPCM

29 tháng 6 2020

Ta có \(H\left(-1\right)=a-b+c;H\left(-2\right)=4a-2b+c\)

\(\Rightarrow H\left(-1\right)+H\left(-2\right)=a-b+c+4a-2b+c=5a-3b+2c=0\left(1\right)\)

\(\Rightarrow H\left(-1\right)=-H\left(-2\right)\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow H\left(-1\right)\cdot H\left(-2\right)=-H\left(-2\right)\cdot H\left(-2\right)=-\left[H\left(-2\right)\right]^2=\le0\)