
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}\)
\(=\frac{50-5}{9}=\frac{45}{9}=5\)
Từ đó suy ra x = 11,y = 17,z = 23
b)
a) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :
\(\frac{y_1}{x_1}=\frac{y_2}{x_2}\Rightarrow x_1=\frac{y_1x_2}{y_2}=\frac{-\frac{3}{4}\cdot2}{\frac{1}{7}}=-\frac{21}{2}\)
b) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :
\(\frac{y_1}{y_2}=\frac{x_1}{x_2}=\frac{y_1-x_1}{y_2-x_2}\Rightarrow\frac{y_1}{3}=\frac{x_1}{-4}=\frac{y_1-x_1}{3-\left(-4\right)}=-\frac{2}{7}\)
Vậy \(x_1=-4\cdot\frac{-2}{7}=\frac{8}{7};y_1=3\cdot\frac{-2}{7}=\frac{-6}{7}\)
c) Tự làm nhé

b) \(A\left(-4;3\right)\)
+ Thay \(x_A=-4\) vào hàm số \(y=\frac{2}{3}x\) ta được:
\(y=\frac{2}{3}.\left(-4\right)\)
\(y=-\frac{8}{3}\)
\(\Rightarrow y\ne y_A.\)
Vậy điểm A không thuộc đồ thị hàm số \(y=\frac{2}{3}x.\)
+ Thay \(x_A=-4\) vào hàm số \(y=\frac{-3}{2}x\) ta được:
\(y=\left(-\frac{3}{2}\right).\left(-4\right)\)
\(y=6\)
\(\Rightarrow y\ne y_A.\)
Vậy điểm A không thuộc đồ thị hàm số \(y=\frac{-3}{2}x.\)
Chúc bạn học tốt!

Ta có :\(\dfrac{x}{y+z}=\dfrac{123-\left(y+z\right)}{y+z}\)
\(\dfrac{y}{x+z}=\dfrac{123-\left(x+z\right)}{x+z}\)
\(\dfrac{z}{y+x}=\dfrac{123-\left(y+x\right)}{y+x}\)
\(\Rightarrow P=\dfrac{123-\left(y+z\right)}{y+z}+\dfrac{123-\left(z+x\right)}{z+x}+\dfrac{123-\left(y+x\right)}{y+x}\)\(\Rightarrow P=123\left(\dfrac{1}{y+z}+\dfrac{1}{x+y}+\dfrac{1}{z+x}\right)-3\)
\(\Rightarrow P=123.\dfrac{1}{45}-3\)
\(\Rightarrow P=-\dfrac{4}{15}\)