Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
góc CAE=góc KAE
=>ΔACE=ΔAKE
=>AC=AK và EC=EK
=>AE là trung trựccủa CK
b: Xét ΔEAB có góc EAB=góc EBA
nên ΔEAB cân tại E
mà EK là đường cao
nên K là trung điểm của AB
=>KA=KB
c: EB=EA
EA>AC
=>EB>AC
Hình:
Giải:
Theo hình vẽ và dữ kiện đề bài, ta liệt kê các góc nhọn:
\(\widehat{ABC};\widehat{ACB};\widehat{BHF};\widehat{FHA};\widehat{FAH};\widehat{AHE};\widehat{HAE};\widehat{EHC}\)
=> Có 8 góc nhọn
Ta có:
\(\left\{{}\begin{matrix}\widehat{FHE}=90^0\\\widehat{HEA}=90^0\\\widehat{FAE}=90^0\end{matrix}\right.\left(gt\right)\)
Suy ra tứ giác AFHE là hình chữ nhật
Từ đó, suy ra:
\(\left\{{}\begin{matrix}FH//AE\left(FH//AC\right)\\HE//AF\left(HE//AB\right)\end{matrix}\right.\)
* Xét trường hợp FH // AE ( FH // AC), có:
- \(\widehat{FHA}=\widehat{HAE}\) (Hai góc so le trong)
- \(\widehat{BHF}=\widehat{ACB}\) (Hai góc đồng vị)
* Xét trường hợp HE // AF ( HE // AB), có:
- \(\widehat{AHE}=\widehat{FAH}\) (Hai góc so le trong)
- \(\widehat{EHC}=\widehat{ABC}\) (Hai góc đồng vị)
Ta thấy có đủ 8 góc nhọn và có 4 cặp góc nhọn bằng nhau
Vậy ...
a: \(\widehat{AEK}=\widehat{ABC};\widehat{AKE}=\widehat{ACB}\)
b: AH\(\perp\)BC
EK//BC
Do đó: AH\(\perp\)EK
a,\(\widehat{C}=180^o-90^o-\widehat{B}=90^o-30^o=60^o\)
b, Xét \(\Delta ACD-vs-\Delta MCD\)
- AC = CM (gt)
- \(\widehat{ACD}=\widehat{MCD}\) (gt)
- CD chung (gt)
=> \(\Delta ACD=\Delta MCD\left(c-g-c\right)\)
c, Ta có:
AK // CD và CK // AD => AK = CD (t/c đoạn chắn)
d, \(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{ACK}=90^o\\\widehat{ACD}=\widehat{CAK}=\dfrac{1}{2}\widehat{C}=30^o\left(so-le-trong\right)\end{matrix}\right.\Rightarrow\widehat{ADC}=\widehat{AKC}=180^o-90^o-30^o=60^o\)