Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\overrightarrow {MN} = 3\overrightarrow a \)có độ dài bằng 3 lần vectơ \(\overrightarrow a \), cùng hướng với vectơ \(\overrightarrow a \)
Suy ra, từ điểm M vẽ vectơ MN với độ dài là 6 ô vuông và có hướng từ trái sang phải
\(\overrightarrow {MP} = - 3\overrightarrow b \)có độ dài bằng 3 lần vectơ \( - \overrightarrow b \), ngược hướng với vectơ \(\overrightarrow b \)
Suy ra, từ điểm M vẽ vectơ MP với độ dài là 3 đường chéo ô vuông và có hướng từ trên xuống dưới chếch sang trái
b) Hình vuông với cạnh bằng 1 thì ta tính được đường chéo có độ dài là \(\sqrt 2 \); \(\left| {\overrightarrow b } \right| = \sqrt 2 \) . Suy ra:
\(\left| {3\overrightarrow b } \right| = 3\left| {\overrightarrow b } \right| = 3\sqrt 2 \); \(\left| { - 3\overrightarrow b } \right| = 3\left| {\overrightarrow { - b} } \right| = 3\sqrt 2 \); \(\left| {2\overrightarrow a + 2\overrightarrow b } \right| = \left| {2\left( {\overrightarrow a + \overrightarrow b } \right)} \right| = 2\left| {\overrightarrow a + \overrightarrow b } \right|\)
Từ điểm cuối của vectơ \(\overrightarrow a \) vẽ một vectơ bằng vectơ \(\overrightarrow b \) ta có \(\overrightarrow c = \overrightarrow a + \overrightarrow b \)
Áp dụng định lý cosin ta tính được độ dài của vectơ \(\overrightarrow c \)là \(\left| {\overrightarrow c } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} - 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \left( {\widehat {\overrightarrow a ,\overrightarrow b }} \right)} = \sqrt {{2^2} + {{\sqrt 2 }^2} - 2.2.\sqrt 2 .\cos \left( {135^\circ } \right)} = \sqrt {10} \)
\( \Rightarrow \left| {2\overrightarrow a + 2\overrightarrow b } \right| = 2\left| {\overrightarrow a + \overrightarrow b } \right| = 2\left| {\overrightarrow c } \right| = 2\sqrt {10} \)
a, \(\widehat{B}\)= \(\widehat{B}=180-\widehat{A}-\widehat{C}=20\)
\(\frac{c}{sinC}=\frac{a}{sinA}\Rightarrow\frac{35}{sin110}=\frac{a}{sin50}\Rightarrow a\simeq28,53\)
\(\frac{c}{sinC}=\frac{b}{sinB}\Rightarrow\frac{35}{sin110}=\frac{b}{sin20}\Rightarrow b\simeq12,74\)
a: \(AB=\sqrt{\left(2+1\right)^2+\left(1-1\right)^2}=3\)
\(BC=\sqrt{\left(-1-2\right)^2+\left(-3-1\right)^2}=5\)
\(AC=\sqrt{\left(-1+1\right)^2+\left(-3-1\right)^2}=4\)
=>C=3+4+5=12
b: Tọa độ trọng tâm là:
\(\left\{{}\begin{matrix}x=\dfrac{-1+2-1}{3}=0\\y=\dfrac{1+1-3}{3}=-\dfrac{1}{3}\end{matrix}\right.\)
c: ABCD là hình bình hành
=>vecto AB=vecto DC
=>-1-x=2-(-1)=3 và -3-y=1-1=0
=>x=-4 và y=-3
a) Ta có :
\(\overrightarrow{AB}=3\\ \overrightarrow{BC}=5\\ \overrightarrow{AC}=4\)
Chu vi tam giác là :
AB + BC + AC = 3 + 4 + 5 = 12
b) Toạ độ trọng tâm của tam giác ABC là :
\(\left(\dfrac{x_A+x_B+x_C}{3};\dfrac{y_A+y_B+y_C}{3}\right)=\left(\dfrac{-1+2+\left(-1\right)}{3};\dfrac{1+1+\left(-3\right)}{3}\right)=\left(0;-\dfrac{1}{3}\right)\)
c) Cho điểm D ( x ; y )
Để tứ giác ABCD là hình bình hành thì :
\(\overrightarrow{AD}=\overrightarrow{BC}\)
\(\Leftrightarrow\left(x+1;y-1\right)=\left(-3;-4\right)\\ \Leftrightarrow\left[{}\begin{matrix}x=-4\\y=-3\end{matrix}\right.\)
Vậy với D ( -4 ; -3 ) thì tứ giác ABCD là hình bình hành
a)Gọi \(D\left(x;y\right)\) là tọa độ điểm cần tìm.
\(\overrightarrow{AD}\left(x-2;y-4\right)\); \(\overrightarrow{BC}\left(2;-4\right)\).
Tứ giác ABCD là hình bình hành khi và chỉ khi:
\(\overrightarrow{AD}=\overrightarrow{BC}\)\(\Leftrightarrow\left\{{}\begin{matrix}x-2=2\\y-4=-4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)\(\Rightarrow D\left(4;0\right)\).
b) Gọi\(A'\left(x;y\right)\) là điểm cần tìm. A' thỏa mãn hai điều sau:
- \(AA'\perp BC\). (1)
- A' , B, C thẳng hàng. (2)
\(\overrightarrow{AA'}\left(x-2;y-4\right)\); \(\overrightarrow{BC}\left(2;-4\right)\).
\(\left(1\right)\Leftrightarrow\overrightarrow{AA'}.\overrightarrow{BC}=\overrightarrow{0}\)\(\Leftrightarrow2\left(x-2\right)-4\left(y-4\right)=0\) (3)
(2) suy ra hai véc tơ \(\overrightarrow{A'B}\) và \(\overrightarrow{BC}\) cùng phương.
Có \(\overrightarrow{A'B}\left(1-x;3-y\right)\).
Nên \(\dfrac{1-x}{2}=\dfrac{3-y}{4}\) (4)
Từ (3) và (4) suy ra: \(\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\).
Vậy A'(1;3).
Gọi D(x;y).
Do tứ giác ABCD là hình bình hành nên \(\overrightarrow{AB}=\overrightarrow{DC}\).
\(\overrightarrow{AB}\left(2;8\right);\overrightarrow{DC}\left(-x;-1-y\right)\).
Do \(\overrightarrow{AB}=\overrightarrow{DC}\) nên \(\left\{{}\begin{matrix}-x=2\\-1-y=8\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-9\end{matrix}\right.\).
Vậy \(D\left(-2;-9\right)\).
Dựa theo hình ta có
Vì Ax//Ct
nên ADC+tCz=180*( trong cùng phía)
mà tCz=xAy
=> ADC=xAy=180*
mà ADC và xAy đang ở vị trí trong cùng phía
Vậy Ay//Cz
Lưu ý: các góc bn nên viết hoa nha, đừng để bị nhầm là tia hay đường thẳng nha bn
Xét tứ giác ABCD có:
A=110*
B=75*
C=105*
Mà A+B+C+D=360
=> D=360-(110+105+75)=60*