Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TỰ VẼ HÌNH NHA BN :
a)Áp dụng định lí PY-ta-go vào tam giác uông ABC có:
BC^2=AB^2+AC^2
BC^2=6^2+8^2
BC^2=36+64
BC^2=100
BC^2=\(\sqrt{100}\)=>BC=10cm
Các bạn làm câu b,c,d giúp mình đi câu a mình tụ làm đc rùi
Xét tam giác OBC và tam giác ODA có
góc O chung
OA=OA(gt)
OB=OD(gt)
=> Tam giác OBC=ODA(c-g-c)
=> BC=AD(cạnh tương ứng)
a: Xét ΔABC có \(\widehat{C}< \widehat{B}< \widehat{A}\)
nên AB<AC<BC
b: Xét ΔEBA có BA=BE
nên ΔBAE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔBAE đều
=>BA=BE(1)
Xét ΔCAB vuông tại A có
\(\cos B=\dfrac{AB}{BC}\)
=>\(\dfrac{AB}{BC}=\dfrac{1}{2}\)
=>BA=1/2BC(2)
Từ (1) và (2) suy ra BE=1/2BC
=>E là trung điểm của BC
Ta có: ΔABC vuông tại A
mà AE là đường trung tuyến
nên AE=CE
c: Xét ΔCAB có
E là trung điểm của BC
EF//AB
Do đó: F là trung điểm của AC
d: Xét ΔCEA có
AI là đường trung tuyến
EF là đường trung tuyến
AI cắt EF tại G
Do đó: G là trọng tâm của ΔCAE
=>H là trung điểm của AE
Ta có: ΔEBA cân tại B
mà BH là đường trung tuyến
nên BH là đường cao
a: OB=12cm
b: Xét ΔDOA vuông tại O và ΔDIA vuông tại I có
AD chung
AO=AI
Do đó: ΔDOA=ΔDIA
Suy ra: \(\widehat{OAD}=\widehat{IAD}\)
c: Xét ΔADC có
AI là đường cao
AI là đường trung tuyến
Do đó: ΔADC cân tại A
Xét ΔBDC có
BI là đường cao
BI là đường trung tuyến
Do đó: ΔBDC cân tại B
Xét ΔADB và ΔACB có
AD=AC
DB=CB
AB chung
Do đó: ΔADB=ΔACB
câu a: do h thuộc đường phân giác góc xOy nên theo tính chất ta có HA = HB.(10
HA vuông góc với 0A,HB VUÔNG góc với OB,góc xOy=90 => HAOB là hcn=> góc AHB =90(2)
Từ (1) và (2)=>HAB là tam giác vuông cân tại H
a,tam giácABM và tam giác ACM co :
AC=AB (2 cạnh bên của tam giác cân)
AM: canh chung
MC=MB(M là trung điểm BC)
suy ra: tam giác ABM =tam giác ACM (cạnh góc cạnh)
b: xét 2 tam giác vuông MKC và tam giác BHM co:
MC=MB (M là trung điểm BC )
góc B = góc C ( hai góc đáy)
suy ra: tam giác CMK= tam giác BMH ( cạnh huyền góc nhọn)
suy ra BH=CK (2 cạnh tương ương)
c,tự nghĩ nha
Bạn ơi bạn vẽ hình sai thì làm sao tụi mình c/m đc