Cho hình vẽ bên, biết y A t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

Kẻ tia đối Ox' của Ox => y O x ' ^ = 40°

=> y O x ' ^ = y A t ^  (hai góc đồng vị bằng nhau)

=> Ox' // At (1).

Mặt khác: OAOB =>  A O B ^ = 90 °

=>  x ' O B ^ = y O B ^ − y O x ' ^ = 90 ° − 40 ° = 50 °

=>  x ' O B ^ = O B z ^ = 50 ° + 130 ° = 180 °

(hai góc trong cùng phía bù nhau)

=>Ox' //Bz (2).

Từ (1) và (2), suy ra At //Bz

7 tháng 8 2017

Bài 2:

a) Ta có : Từ \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{5a}{5c}=\dfrac{7b}{7d}\)

Theo tính chất dãy tỉ số bằng nhau, ta có :

\(\dfrac{5a}{5c}=\dfrac{7b}{7d}=\dfrac{5a+7b}{5c+7d}\left(1\right)\)

\(\dfrac{5a}{5c}=\dfrac{7b}{7d}=\dfrac{5a-7b}{5c-7d}\left(2\right)\)

Từ (1) và (2)=> \(\dfrac{5a+7b}{5c+7d}=\dfrac{5a-7b}{5c-7d}\Rightarrow\dfrac{5a+7b}{5a-7b}=\dfrac{5c+7d}{5c-7d}\)Vậy...

b) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Thay các đẳng thức vừa tìm được , ta có :

\(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\left(1\right)\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}\)

\(=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

từ (1) và (2)=> đpcm

tik mik nha !!!

7 tháng 8 2017

1. Bạn xem lại đề bài nhé! Mình nghĩ là \(2x=3y=5z\) thì đúng hơn!

2.

a) Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{5a}{5c}=\dfrac{7b}{7d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{5a}{5c}=\dfrac{7b}{7d}=\dfrac{5a+7b}{5c+7d}=\dfrac{5a-7b}{5c-7d}\)

Từ \(\dfrac{5a+7b}{5c+7d}=\dfrac{5a-7b}{5c-7d}\Rightarrow\dfrac{5a+7b}{5a-7b}=\dfrac{5c+7d}{5c-7d}\)(đpcm)

Vậy \(\dfrac{5a+7b}{5a-7b}=\dfrac{5c+7d}{5c-7d}\)

b) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có:

\(VT=\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=\dfrac{bd.k^2}{bd}=k^2\left(1\right)\)

\(VP=\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{b^2.k^2+d^2.k^2}{b^2+d^2}=\dfrac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ \(\left(1\right)\)\(\left(2\right)\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)

Vậy \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

2 tháng 11 2017

1. đề bạn ghi rõ lại giúp mình đc ko r mình giải lại cho

2. Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x^2}{2.3^2}=\dfrac{y^2}{5^2}=\dfrac{2x^2-y^2}{18-25}=\dfrac{-28}{-7}=4\)

\(\dfrac{x}{3}=4\Rightarrow x=12\)

\(\dfrac{y}{5}=4\Rightarrow y=20\)

Vậy x=12 và y=20

29 tháng 6 2017

a) Có : \(\widehat{BON}=\widehat{BOM}+\widehat{MON}=90^0+\widehat{MON}\)

Và : \(\widehat{AOM}=\widehat{AON}+\widehat{MON}=90^0+\widehat{MON}\)

=> \(\widehat{BOM}=\widehat{AON}\)

b) Có : \(\widehat{BON}+\widehat{AOM}=\widehat{BOM}+2\widehat{MON}+\widehat{AON}=180^0\)

Mặt khác : \(\widehat{BOM}+\widehat{MON}+\widehat{AON}=150^0\)

=> \(\widehat{MON}=180^0-150^0=30^0\)

29 tháng 6 2017

tks leuleuyeu!!!!

21 tháng 8 2017

Bài 1: Cho \(\widehat{xoy}\).Tia Oz là tia phân giác của \(\widehat{xoy}\).Gọi Ot là tia đối của tia Ox, Oh là tia đối của tia Oz a)Cho biết \(\widehat{xoy}\) = 100 độ.Tính \(\widehat{tOh}\) ? b) Cho biết \(\widehat{tOh}\)=40 độ. Tính \(\widehat{xOy}\) ? c)Tính giá trị lớn nhất của \(\widehat{xOy}+\widehat{tOh}\)? d) Cho biết \(\widehat{xOy}+\widehat{tOh}\)=210 độ.Tính \(\widehat{xoy};\widehat{tOh}\) ? Bài 2: Cho năm tia chung gốc...
Đọc tiếp

Bài 1: Cho \(\widehat{xoy}\).Tia Oz là tia phân giác của \(\widehat{xoy}\).Gọi Ot là tia đối của tia Ox, Oh là tia đối của tia Oz

a)Cho biết \(\widehat{xoy}\) = 100 độ.Tính \(\widehat{tOh}\) ?

b) Cho biết \(\widehat{tOh}\)=40 độ. Tính \(\widehat{xOy}\) ?

c)Tính giá trị lớn nhất của \(\widehat{xOy}+\widehat{tOh}\)?

d) Cho biết \(\widehat{xOy}+\widehat{tOh}\)=210 độ.Tính \(\widehat{xoy};\widehat{tOh}\) ?

Bài 2: Cho năm tia chung gốc tại O;theo thứ tự OA;OB;OC;OD;OE tạo thành bốn gốc kề bù có số đo: \(\widehat{AOB}\) =30 độ; \(\widehat{BOC}\)= 70 độ; \(\widehat{COD}\) = 80 độ; \(\widehat{DOE}\) =30 độ.

1. Chứng tỏ hai \(\widehat{AOB}\)\(\widehat{DOE}\) là hai góc đối đỉnh?

2. Tính \(\widehat{EOA}\)?

Bài 3: Cho hai đường thẳng x'x và y'y cắt nhau tại điểm O.Một điểm A nằm trên tia phân giác của \(\widehat{x'Oy'}\)và một điểm B nằm trong \(\widehat{xOy}\). Biết rằng \(\widehat{yOx'}\)=120 độ; \(\widehat{BOy'}\)=150 độ.

1) Chứng tỏ rằng ba điểm A,O,B thẳng hàng

2) Kể tên và số đo của các cặp góc đối đỉnh có trên hình vẽ (không kể góc bẹt)

Mọi người ơi ,giúp tớ với! Sáng mai tớ phải đi học rồi!HUhu!bucminhgianroioho

Ai giúp được tớ thì tớ xin trân thành cảm ơn trước và mong các bạn sớm có cách làm cả ba bài bạn nhé! ngaingunghihiokvui

Tớ sẽ ticks cho các cậu nếu người nào có kết quả sớm nhất nha!thanghoabanhquangaingungoaoahehe


1
28 tháng 6 2017

bài 1 : a) oh là tia đối oz \(\Rightarrow\) zoh thẳng hàng

ot là tia đối của tia ox \(\Rightarrow\) xot thẳng hàng

ta có : xoz = \(\dfrac{100}{2}=50^0\) (oz là tia phân giác của góc xoy)

mà xoz = toh (đối đỉnh) \(\Rightarrow\) toh = 500

b) ta có : toh = xoz (đối đỉnh)

mà toh = 400 \(\Rightarrow\) xoz = 400

\(\Rightarrow\) xoy = 40.2 = 800

28 tháng 6 2017

bạn ơi tớ bảo phần ab bài 1 tớ biết làm rồi tớ muốn cậu có thể giúp tớ bài 2 và bài 3,bài 1 c,d được không

xin cảm ơn các bạn trước!

12 tháng 6 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{y+x+t}=\dfrac{y}{z+t+x}=\dfrac{y}{t+x+y}=\dfrac{t}{x+y+z}=\dfrac{x+y+z+t}{3\left(x+y+z+t\right)}=\dfrac{1}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}x+y+z=3t\\y+z+t=3x\\z+t+x=3y\\t+x+y=3z\end{matrix}\right.\)

\(\Rightarrow x=y=z=t\)

Thay vào P ta được :

\(P=1+1+1+1=4\)

12 tháng 6 2017

cảm ơn bn nhé!

7 tháng 4 2017

Với mọi x thuộc R Có (x^2-9)^2 \(\ge\) 0

[y-4] \(\ge\) 0

Suy ra (x^2-9)^2+[y-4] - 1 \(\ge\) -1

Xét A=-1 khi và chỉ khi (x^2-9)^2 và [y-4] đều bằng 0

Tự tính ra

7 tháng 4 2017

Xin lỗi nhưng vì không biết nên mình phải dùng [ ] thay cho GTTĐ nhé

Xin lỗi nhiều tại mình o tìm được kí hiệu đó