K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 9 2021

Qua A kẻ đường thẳng vuông góc AF cắt đường thẳng CD tại P

Xét hai tam giác vuông ABE và ADP có:

\(\left\{{}\begin{matrix}\widehat{B}=\widehat{D}=90^0\\AB=AD\\\widehat{BAE}=\widehat{DAP}\left(\text{ cùng phụ }\widehat{DAE}\right)\end{matrix}\right.\) 

\(\Rightarrow\Delta ABE=\Delta ADP\Rightarrow AP=AE\)

Áp dụng hệ thức lượng trong tam giác vuông APF:

\(\dfrac{1}{AD^2}=\dfrac{1}{AP^2}+\dfrac{1}{AF^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\) (đpcm)

NV
19 tháng 9 2021

undefined

5 tháng 1 2020

a, Ta có ∆ABE = ∆ADF(g.c.g) => AE = AF

b, Ta có: ∆AKF ~ ∆CAF ( F ^ chung và  F A K ^ = F C A ^ = 45 0 )

=> A F H F = C F A F =>  A F 2 = K F . C F

c, S A E F = 93 2 c m 2

d, Ta có: AE.AJ=AF.AJ=AD.FJ

=>  A E . A J F J = AD không đổi

22 tháng 10 2016

a/ Tam giác BMD vuông tại B có BI là trung tuyến nên IB=MD/2=ID lại có CB = CD
=> IC là đường trung trực của đoạn thẳng BD
=> IC qua trung điểm O của BD hay I,O,C thẳng hàng.
Mặt khác: A,O,C thẳng hàng (O là trung điểm AC)
Vậy A,O,I,C thẳng hàng.
b/ Ta có: AFD = CID (cùng bù với góc AID)
Tứ giác CDIE nội tiếp (tổng hai góc đối I + C = 180 độ)
=> góc CID = CED (2 đỉnh kề cùng nhìn cạnh CD dưới góc bằng nhau).
Do đó: góc AFD = CED.
c/ Tự chứng minh tam giác AFD = tam giác CED => DF = DE
EF là trung trực của đoạn thẳng MD => DF = FM và DE = EM
Từ đó suy ra DF=FM=EM=DE => DEMF là hình thoi (1)
=> DI là phân giác của góc EDF.
Tứ giác CDIE nội tiếp (tổng hai góc đối I + C = 180 độ)
=> góc IDE = góc ICE = 45 độ => Góc EDF = 2.IDE = 90 độ (2)
Từ (1) và (2) => DEMF là hình vuông.

21 tháng 10 2016

bvczakk

19 tháng 8 2016

A B C D K E F

a/ Ta có : góc KAD = góc EAB vì cùng phụ với góc DAE ; AD = AB

=> tam giác DAK = tam giác ABE (cgv.gnk)

=> AK = AE => tam giác AKE là tam giác cân

b/ Áp dụng hệ thức về cạnh trong tam giác vuông :  \(\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{AK^2}+\frac{1}{AF^2}=\frac{1}{AD^2}\) không đổi