K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

Đáp án B

1 tháng 4 2016

Theo công thức ta có:

Sxq = 2πrh = 2√3 πr2 

Stp = 2πrh + 2πr2 =  2√3 πr2 + 2 πr2 = 2(√3 + 1)πr2  ( đơn vị thể tích)

b) Vtrụ = πR2h = √3 π r3

c) Giả sử trục của hình trụ là O1O2 và A nằm trên đường tròn tâm O1, B nằm trên đường tròn tâm O2; I là trung điểm của O1O2, J là trung điểm cảu AB. Khi đó IJ là đường vuông góc chung của O1Ovà AB. Hạ BB1 vuông góc với đáy, J1 là hình chiếu vuông góc của J xuống đáy.

Ta có  là trung điểm của  = IJ.

Theo giả thiết  = 300.

do vậy: AB1 = BB1.tan 300 =  = r.

Xét tam giác vuông 

AB1 = BB1.tan 300 = O1J1A vuông tại J1, ta có:  =  -   .

Vậy khoảng cách giữa AB và O1O2 :  

30 tháng 11 2019

Đáp án D

Gọi r là bán kính đáy của hình nón đỉnh O.

Ta có r R = h − x h ⇒ r = h − x h R  

Chiều cao của khối nón đỉnh O là x

Thể tích của khối nón đỉnh O là:

V = 1 3 π h − x h 2 x = π R 2 6 h 2 h − x h − x 2 x ≤ π R 2 6 h 2 h − x + h − x + 2 x 3 3 = π R 2 6 h 2 2 h 3 3 = 4 π R 2 h 81

⇒ V m a x ⇔ h − x = 2 x ⇔ x = h 3  

14 tháng 3 2018

17 tháng 7 2019

11 tháng 3 2017

14 tháng 1 2016

câu a:

xét tứ giác AEHF, ta có

góc A=90(tam giác ABC vuông tại A)

Góc E=90(E là hinh chiếu của H trên AB nên EH vuông góc với AB tại E)

Góc F=90( F là hình chiếu của H trên AC nên HF vuông góc với AC tại F)

TỪ đó suy ra tứ giác AEHF là hình chữ nhật (tứ giác có 3 góc vuông là HCN)

14 tháng 1 2016

Câu b:

Xét tam giác ABC vuông tại A ,ta có:

AM=1/2 *BC( định ý đường trung tuyến trong tam giác vuông)

mà AM=2,5cm (gt)

suy ra BC=cm

Vì tam giác ABC vuông tại A(gt)

nên BC^2=AM^2 + AB^2(định lý pytago)

suy ra AC=4cm

xét tam giác ABC ta có:

S(ABC)=1/2(AB*AC)=1/2(3*4)=6cm vuông

22 tháng 3 2022

lên đây mà xem nek: https://qanda.ai/vi/solutions/3j3oUVV6jJ

23 tháng 9 2017

Đáp án C

Phương pháp:

+) Chứng minh mặt phẳng (P) không cắt đáy (O';R)

+) Tìm phần hình chiếu của mặt phẳng (P) trên mặt đáy. Tính  S h c

+) Sử dụng công thức  S h c = S . cos 60

Cách giải:

Gọi M là trung điểm của AB ta có: 

O M = O A 2 − A B 2 2 = R 2 − 3 R 2 4 = R 2

Giả sử mặt phẳng (P) cắt trục OO’ tại  I. Ta có : IA = IB nên Δ I A B  cân tại I, do đó M I ⊥ A B

Vậy diện tích phần thiết diện cần tìm là :