K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017

5 tháng 8 2018

7 tháng 6 2017

Đáp án A

Gọi bán kính đáy và chiều cao của hình trụ  lần lượt là r và h. Khi đó thiết diện qua trục của hình trụ là một hình chữ nhật có kích thước hai cạnh là 2r và h. Diện tích hình chữ nhật đó là S = 2 r h .

Quan sát hình vẽ, ta thấy R 2 = h 2 2 + r 2 ⇔ h = 2 R 2 − r 2 = 2 3 a 2 − r 2 .

Khi đó S = 2 r h = 4 r 3 a 2 − r 2 ≤ 4. r 2 + 3 a 2 − r 2 2 2 = 6 a 2 . Dấu “=” xảy ra khi và chỉ khi

r = 3 a 2 − r 2 ⇔ 2 r 2 = 3 a 2 ⇔ r = a 6 2 ⇒ h = 2 3 a 2 − 3 a 2 2 = a 6  

Vậy diện tích toàn phần của hình trụ (T) 

S t p = 2 π r h + 2 π r 2 = 2 π a 6 . a 6 2 + 2 π a 6 2 2 = 9 π a 2 (đvdt).

1 tháng 1 2017

6 tháng 11 2018

Chọn A

* Theo hình vẽ, do ABCD là hình vuông cạnh a nên ta có: 

5 tháng 10 2018

26 tháng 9 2018

Đáp án B

Diện tích toàn phần của khối trụ là 

18 tháng 12 2019

Đáp án đúng : C

11 tháng 12 2018

Đáp án D

Gọi J là trung điểm CD; G là giao điểm của MK và AJ; I là giao điểm của MK và AO.

Gọi N, P lần lượt là giao điểm của ME với AC, MF với AD. Khi đó (MNP) chính là thiết diện khi cắt tứ diện đều ABCD bởi mp (MEF). Vì BE=BF=2a nên ta cũng có MN=MP, hay tam giác MNP cân tại M, đường cao MG.

Để tính diện tích MNP, ta cần đi tìm MG và NP.

Vì G là giao điểm của các đường trung tuyến AJ và MK trong tam giác ABK nên G là trọng tâm của tam giác ABK, do đó 

và chứng minh dựa vào các tam giác đồng dạng, tính chất tỉ số đồng dạng và các đường cao; đường cao AG, AJ trong tam giác ANP và ACD).

Áp dụng nhanh: tam giác đều cạnh a có độ dài mỗi đường cao là