K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 5 2019

Câu 1:

\(P=4sin\frac{A+B}{2}cos\frac{A-B}{2}-2\left(2cos^2\frac{C}{2}-1\right)\)

\(P=4cos\frac{C}{2}cos\frac{A-B}{2}-4cos^2\frac{C}{2}+2\)

\(\Leftrightarrow4cos^2\frac{C}{2}-4cos\frac{C}{2}.cos\frac{A-B}{2}+P-2=0\)

Đặt \(x=cos\frac{C}{2}\)

\(\Rightarrow4x^2-4cos\frac{A-B}{2}.x+P-2=0\) (1)

Do góc C luôn tồn tại \(\Rightarrow\) phương trình (1) luôn có ít nhất 1 nghiệm

\(\Delta'=4cos^2\frac{A-B}{2}-4\left(P-2\right)\ge0\)

\(\Leftrightarrow4cos^2\frac{A-B}{2}+8\ge4P\Rightarrow P\le cos^2\frac{A-B}{2}+2\le3\)

\(\Rightarrow P_{max}=3\) khi \(\left\{{}\begin{matrix}A=B\\cos\frac{C}{2}=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A=B=30^0\\C=120^0\end{matrix}\right.\)

NV
10 tháng 5 2019

Câu 2: đường tròn tâm \(O\left(1;2\right)\) ; \(R=2\)

Do \(M\in d\Rightarrow M\left(a;a+7\right)\)

\(OM^2=\left(a-1\right)^2+\left(a+5\right)^2=2a^2+8a+26\)

\(\Rightarrow MA^2=MB^2=IM^2-R^2=\left(a-1\right)^2+\left(a+5\right)^2-4=2a^2+8a+22\)

Ta có \(\Delta OAM=\Delta OBM\Rightarrow S_{OAMB}=2S_{OAM}=OA.AM=R.AM\)

Mặt khác do \(OM\perp AB\) (tính chất đường tròn)

\(\Rightarrow S_{OAMB}=AB.OM\)

\(\Rightarrow AB.OM=R.AM\Rightarrow AB^2=\frac{R^2.AM^2}{OM^2}=\frac{4\left(2a^2+8a+22\right)}{2a^2+8a+26}=\frac{4\left(a^2+4a+11\right)}{a^2+4a+13}\)

\(\Rightarrow AB^2=4-\frac{8}{a^2+4a+13}=4-\frac{8}{\left(a+2\right)^2+9}\ge4-\frac{8}{9}=\frac{28}{9}\)

\(\Rightarrow AB_{min}=\frac{2\sqrt{7}}{3}\) khi \(a=-2\Rightarrow b=5\Rightarrow a+b=3\)

NV
21 tháng 4 2021

M thuộc d nên: \(a-2b-2=0\Rightarrow2b=a-2\)

\(\left\{{}\begin{matrix}\overrightarrow{MA}=\left(-a;1-b\right)\\\overrightarrow{MB}=\left(3-a;4-b\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{MA}+\overrightarrow{MB}=\left(3-2a;5-2b\right)=\left(3-2a;9-2a\right)\)

Đặt \(T=\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\sqrt{\left(3-2a\right)^2+\left(9-2a\right)^2}=\sqrt{8a^2-48a+90}=\sqrt{8\left(a-3\right)^2+18}\ge\sqrt{18}\)

Dấu "=" xảy ra khi \(a-3=0\Leftrightarrow a=3\Rightarrow b=\dfrac{1}{2}\)

21 tháng 4 2021

điểm M(a, b) bằng bao nhiu vậy anh

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

28 tháng 3 2021

Gọi C là giao điểm của AB và \(\Delta\), O là giao điểm IM và AB

Gọi \(I=\left(m;n\right)\Rightarrow IM:x-3y-m+3n=0\)

\(M:\left\{{}\begin{matrix}x-3y-m+3n=0\\x+y=0\end{matrix}\right.\Rightarrow M=\left(\dfrac{m-3n}{4};\dfrac{3n-m}{4}\right)\)

\(\Rightarrow IM=\sqrt{\left(\dfrac{m-3n}{4}-m\right)^2+\left(\dfrac{3n-m}{4}-n\right)^2}=\dfrac{\sqrt{10}\left|m+n\right|}{4}\)

\(d\left(I,\Delta\right)=\dfrac{\left|m+n\right|}{\sqrt{2}}=2\sqrt{2}\Rightarrow\left|m+n\right|=4\left(1\right)\)

\(\Rightarrow IM=\sqrt{10}\)

Ta có \(IO.IM=IA^2=R^2\Rightarrow IO=\dfrac{IB^2}{IM}=\dfrac{4}{\sqrt{10}}\)

\(d\left(I;AB\right)=\dfrac{\left|3m+n-2\right|}{\sqrt{10}}=\dfrac{4}{\sqrt{10}}\Rightarrow\left|3m+n-2\right|=4\left(2\right)\)

Từ \(\left(1\right)\&\left(2\right)\) tìm được tọa độ điểm I

Đến đây viết phương trình đường tròn tâm I có bán kính \(R=\sqrt{2}\) là được.

(C): x^2+y^2+4x-2y-4=0

=>(x+2)^2+(y-1)^2=9

=>I(-2;1); R=3

M thuộc d nên M(a;1-a)

M nằm ngoài (C) nên IM>R

=>IM^2>9

=>2a^2+4a-5>0

MA^2=MB^2=IM^2-IA^2=(a+2)^2+(-a)^2-9=2a^2+4a-5

=>x^2+y^2-2ax+2(a-1)y-6a+6=0(1)

A,B thuộc (C)

=>Tọa độ A,B thỏa mãn phương trình:

 x^2+y^2+4x-2y-4=0(2)

(1)-(2)=(a+2)x-ay+3a-5=0(3)

Tọa độ A,B thỏa mãn (3) nên (3) chính là phương trình đường thẳng AB

(E) tiếp xúc AB nên (E): R1=d(E,AB)

Chu vi của (E) lớn nhất khi R1 lớn nhất

=>d(E;AB) lớn nhất

Gọi H là hình chiếu vuông góc của E lên AB

=>d(E,Δ)=EH<=EK=căn 10/2

Dấu = xảy ra khi H trùng K

=>AB vuông góc EK

vecto EK=(-1/2;3/2), AB có VTCP là (a;a+2)

AB vuông góc EK

=>-1/2a+3/2(a+2)=0

=>a=-3

=>M(-3;4)

I(x,y) có tung độ dương nên y>0 và thuộc (d)

nên I(x;-3x-4)

y>0

=>-3x-4>0

=>-3x>4

=>x<-4/3

Theo đề, ta có: d(I;Ox)=d(I;Oy)=R

(C) tiếp xúc với Ox,Oy nên |x|=|-3x-4|

=>3x+4=x hoặc -3x-4=x

=>2x=-4 hoặc -4x=4

=>x=-2(nhận) hoặc x=-1(loại)

=>I(-2;2)

R=|2|=2

=>(C): (x+2)^2+(y-2)^2=4

=>B

I(x,y) có tung độ dương nên y>0 và thuộc (d)

nên I(x;-3x-4)

y>0

=>-3x-4>0

=>-3x>4

=>x<-4/3

Theo đề, ta có: d(I;Ox)=d(I;Oy)=R

(C) tiếp xúc với Ox,Oy nên |x|=|-3x-4|

=>3x+4=x hoặc -3x-4=x

=>2x=-4 hoặc -4x=4

=>x=-2(nhận) hoặc x=-1(loại)

=>I(-2;2)

R=|2|=2

=>(C): (x+2)^2+(y-2)^2=4

=>B