K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 11 2021

\(\widehat{BAC}=60^0\Rightarrow\) các tam giác ABC và ACD là các tam giác đều

\(\Rightarrow AC=AB=7\)

\(\overrightarrow{AB}.\overrightarrow{AC}=AB.AC.cos\widehat{BAC}=7.7.cos60^0=\dfrac{49}{2}\)

\(\overrightarrow{OA}=-\dfrac{1}{2}\overrightarrow{AC}\Rightarrow\overrightarrow{AB}.\overrightarrow{OA}=-\dfrac{1}{2}\overrightarrow{AB}.\overrightarrow{AC}=-\dfrac{49}{4}\)

\(\overrightarrow{AC}.\overrightarrow{BD}=\overrightarrow{0}\) (do theo tính chất hình thoi ta có \(AC\perp BD\))

\(\overrightarrow{AB}.\overrightarrow{OB}=\overrightarrow{AB}\left(\overrightarrow{OA}+\overrightarrow{AB}\right)=\overrightarrow{AB}.\overrightarrow{OA}+\overrightarrow{AB}^2=-\dfrac{49}{4}+7^2=\dfrac{147}{4}\)

NV
26 tháng 12 2022

\(\left|\overrightarrow{BD}\right|=BD=\sqrt{AB^2+AD^2}=\sqrt{41}\)

Do O là tâm hình chữ nhật \(\Rightarrow\) O là trung điểm BD

Lại có M là trung điểm CD \(\Rightarrow\) OM là đường trung bình tam giác BCD

\(\Rightarrow\overrightarrow{OM}=\dfrac{1}{2}\overrightarrow{BC}\)

\(\Rightarrow2\overrightarrow{OM}=\overrightarrow{BC}\)

Đồng thời O là trung điểm AC \(\Rightarrow\overrightarrow{OC}=\dfrac{1}{2}\overrightarrow{AC}\)

Do đó:

\(2\overrightarrow{OM}+\overrightarrow{OB}=\overrightarrow{BC}+\overrightarrow{OB}=\overrightarrow{OC}=\dfrac{1}{2}\overrightarrow{AC}\) (đpcm)