Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ\(AK\perp AM\left(K\in OC\right)\)
\(AH\perp DC\left(H\in DC\right)\)
Áp dụng hệ thức giữa cạnh và đường cao và tam giác vuông AKN , đường cao AH , ta có
\(\dfrac{1}{AK^2}+\dfrac{1}{AN^2}=\dfrac{1}{AH^2}\left(1\right)\)
Xét \(\Delta AMB\)và\(\Delta ADK\)có:
\(\left\{{}\begin{matrix}AD=AB\\\widehat{B}=\widehat{D}\\\widehat{DAK}=\widehat{MAB}\end{matrix}\right.\)
=> \(\Delta AMB=\Delta AKD\)
=> AM=AK ( 2 cạnh tương ứng)(2)
Áp dụng định lý py-ta-go , ta có :
\(HD^2+AH^2=AD^2\)
=>\(AH^2=AD^2-HD^2\)(3)
\(\Delta ADH\perp H\)có :\(\widehat{ADH}+\widehat{DAH}=90^o\)
=> \(\widehat{ADH}=90^o-60^o\)(Vì ABCD là h.thoi có góc DAB=120 độ => góc DAH=60 độ)
=>\(\widehat{ADH}=30^o\)
=>\(DH=\dfrac{1}{2}AD\)(4)
Thay (4) vào (3) , ta có : \(AH^2=AD^2-\left(\dfrac{1}{2}.AD\right)^2\)
=\(\dfrac{3}{4}.AD^2\)
=\(\dfrac{3}{4}.AB^2\)(vì AB=AD)
Thay (2) vào (5) , ta có :
\(\dfrac{1}{AM^2}+\dfrac{1}{AN^2}=\dfrac{4}{3AB^2}\)
<=> \(\dfrac{3}{AM^2}+\dfrac{3}{AN^2}=\dfrac{4}{AB^2}\)
Kẻ AE⊥AN⇒ˆEAN=90o⇒ˆDAE=15o,AB=AD,ˆB=ˆD⇒ΔADE=ΔABM⇒AE=AMAE⊥AN⇒EAN^=90o⇒DAE^=15o,AB=AD,B^=D^⇒ΔADE=ΔABM⇒AE=AM
Theo hệ thức..... ⇒1AH2=1AE2+1AN2⇒1AH2=1AM2+1AN2⇒1AH2=1AE2+1AN2⇒1AH2=1AM2+1AN2
Lại có AH2+HD2=AD2⇒AH2=AD2−HD2=AD2−AD24⇒AH2=34AD2⇒1AH2=43AB2AH2+HD2=AD2⇒AH2=AD2−HD2=AD2−AD24⇒AH2=34AD2⇒1AH2=43AB2
Kẻ AE⊥AN⇒ˆEAN=90o⇒ˆDAE=15o,AB=AD,ˆB=ˆD⇒ΔADE=ΔABM⇒AE=AMAE⊥AN⇒EAN^=90o⇒DAE^=15o,AB=AD,B^=D^⇒ΔADE=ΔABM⇒AE=AM
Theo hệ thức..... ⇒1AH2=1AE2+1AN2⇒1AH2=1AM2+1AN2⇒1AH2=1AE2+1AN2⇒1AH2=1AM2+1AN2
Lại có AH2+HD2=AD2⇒AH2=AD2−HD2=AD2−AD24⇒AH2=34AD2⇒1AH2=43AB2AH2+HD2=AD2⇒AH2=AD2−HD2=AD2−AD24⇒AH2=34AD2⇒1AH2=43AB2
Vậy....