K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2019

A B C D I K H L

Trên cạnh CD lấy điểm L sao cho ^DAL = ^xAB = 150. Khi đó ^KAL = ^BAD - ^xAB - ^DAL = 900

Xét \(\Delta\)ALD và \(\Delta\)AIB: AD = AB, ^ADL = ^ABI (=600), ^DAL = ^BAI (=150) => \(\Delta\)ALD = \(\Delta\)AIB (g.c.g)

=> AI = AL (2 cạnh tuơng ứng). Xét \(\Delta\)AKL có ^KAL = 900 (cmt), đường cao AH

Suy ra \(\frac{1}{AL^2}+\frac{1}{AK^2}=\frac{1}{AH^2}=\frac{1}{\left(\frac{\sqrt{3}}{2}a\right)^2}=\frac{4}{3a^2}\)(Hệ thức luợng tam giác vuông + Tỉ số lượng giác)

Hay \(\frac{1}{AI^2}+\frac{1}{AK^2}=\frac{4}{3a^2}\) (Vì AL = AI). Kết luận ...

22 tháng 9 2017

Kẻ tia Ay sao cho \(\widehat{yAD}=15^0\). Tia Ay cắt DC tại E.

Kẻ \(AF\perp DC\left(F\in DC\right)\)

\(\Delta EAD=\Delta IAB\left(g-c-g\right)\)

\(\Rightarrow\left\{{}\begin{matrix}AD=AB\\AE=AI\end{matrix}\right.\) (1)

\(\widehat{EAI}=\widehat{DAB}-\widehat{DAE}-\widehat{IAB}=120^0-15^0-15^0=90^0\)

\(\Rightarrow\dfrac{1}{AE^2}+\dfrac{1}{AK^2}=\dfrac{1}{AF^2}\) (h.t.l. trong \(\Delta AEK\) vuông tại A) (2)

\(\widehat{DAC}+\widehat{DAB}=180^0\) (trong cùng phía, AB // CD)

\(\Rightarrow\widehat{DAC}=60^0\)

\(\Rightarrow\Delta ADC\) đều (AD = DC) có AF là đ.c.

\(\Rightarrow AF=\dfrac{\sqrt{3}}{2}AD\)

\(\Rightarrow\dfrac{1}{AF^2}=\dfrac{4}{3AD^2}\) (3)

(1), (2) và (3) \(\Rightarrow\dfrac{4}{3AB^2}=\dfrac{1}{AI^2}+\dfrac{1}{AK^2}\left(\text{đ}pcm\right)\)

Hình tự vẽ >o<

23 tháng 7 2016

Trên CD lấy N sao cho góc DAF=15 độ.

Kẻ AE vuông góc với CD tại E.

Tam giác ABM=Tam giác ADF (g.c.g), suy ra AM=AF.

Tam giác AED vuông tại E có \(AD=AE\cdot sinD=\frac{\sqrt{3}}{2}AD\Rightarrow AE^2=\frac{3}{4}AB^2\)

Tam giác ANF có góc ANF=góc BAD-góc BAM-góc DAF=120 độ- 15 độ- 15 độ =90 độ. Suy ra tam giác NAF vuông tại A.

\(\Rightarrow\frac{1}{AN^2}+\frac{1}{AF^2}=\frac{1}{AE^2}\)

hay \(\frac{1}{AN^2}+\frac{1}{AM^2}=\frac{4}{3AB^2}\)

12 tháng 11 2017

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

2 tháng 10 2016

A B C D N M x K H

Hình vẽ không được đẹp cho lắm :))

Từ kẻ đường thẳng tạo với cạnh AD một góc bằng 15 độ, cắt cạnh CD tại K. Từ đó dễ dàng suy ra góc KAN = 90 độ

Từ A lại kẻ đường thẳng vuông góc với CD tại H.

Xét tam giác AKD và tam giác AMB có AB = AD , góc BAM = góc KAD = 15 độ , góc ABM = góc ADK

=> tam giác AKD = tam giác AMB (g.c.g) => AM = AK

Áp dụng hệ thức về cạnh trong tam giác vuông, ta có : \(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{1}{AK^2}+\frac{1}{AN^2}=\frac{1}{AH^2}\)

Mà : \(AH=sin\widehat{ADH}.AD=sin60^o.AB=\frac{\sqrt{3}}{2}AB\)

\(\Rightarrow\frac{1}{AH^2}=\frac{4}{3AB^2}\)

Vậy \(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{4}{3AB^2}\)