Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBEC và ΔAEFcó
góc BEC=góc AEF
góc ECB=góc EFA
=>ΔBEC đồng dạng với ΔAEF
b: Xét ΔFEA và ΔFCD có
góc FEA=góc FCD
góc F chung
=>ΔFEA đồng dạng với ΔFCD
Từ câu c suy ra \(\frac{BE}{BD}=\frac{BD}{DF}\) 1
ta có \(B_1=C_1\) (2 góc so le trong)
\(C_1=D_1\) (2 góc so le trong)
\(\Rightarrow B_1=D_1\)
Lại có : \(BED=B_1+60\)
\(BDF=D_1+60\)
\(\Rightarrow BED=BDF\) 2
Từ 1 và 2 suy ra \(\Delta BDE\infty\Delta DBF\)
a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có
góc E chung
=>ΔBDE đồng dạng với ΔDCE
b: Xét ΔHCD vuông tại H và ΔCDB vuông tại C có
góc HCD=góc CDB
=>ΔHCD đồng dạng với ΔCDB
=>HC/CD=CD/DB
=>CD^2=HC*DB
xét ΔABC và ΔADC có
\(\widehat{ADC}\)=\(\widehat{ABC}\)=90\(^o\)
\(\dfrac{AB}{DC}\)=\(\dfrac{BC}{AD}\)=1
=>ΔABC∼ΔADC(c.g.c)