Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔPBC đồng dạng với ΔCDN
=>CD*BC=BP*DN
=>BP*DN=AB^2
b: AB^2=BP*DN
=>BD/BP=DN/DB
Xét ΔBND và ΔBPD có
góc BDN=góc PBD
DN/DB=BD/BP
=>ΔBND đồng dạng với ΔPDB
=>góc BND=góc BDP
góc BMD=góc BND+góc MDN
=>góc BMD=góc BDM+góc MDN=góc BDA=60 độ
a, xét tam giác NPA và tam giác CBP có
AP=PB ; goc APN= goc CPB ; goc PAN = goc PBC (ND//BC)
==> tam giác APN = tam giác BPC ( g.c.g)
b. vì ÁP//DC ==> tam giác NPA đồng dạng với NCD
mà tam giác NPA đồng dạng với tam giác CPB
==> tam giác CPB đồng dạng với tam giác NCD
a/
•Xét ∆ANP và ∆BCP có:
góc APN = góc BPC (đối đỉnh)
góc NAP = CBP (so le trong AD//BC)
Nên ∆ANP đồng dạng với ∆BCP (g.g) (1)
•Xét ∆ANP và ∆DNC có:
góc N: góc chung
góc NAP = góc NDC (đồng vị do AB//CD hay AP//CD)
Nên ∆ANP đồng dạng với ∆DNC (g.g) (2)
*Từ (1) và (2) suy ra ∆PBC đồng dạng với ∆CDN (cùng đồng dạng với ∆PAN)
Do vậy \(\dfrac{BC}{BP}=\dfrac{DN}{DC}\) (3)
Mà ABCD là hình thoi nên BC = CD → ∆BCD cân tại C
Mặt khác góc A = góc C (2 góc đối nhau trong hình thoi)
Thế nên ∆BCD là tam giác đều nên BC = CD = BD (4)
*Từ (3) và (4) suy ra \(\dfrac{BC}{BP}=\dfrac{DN}{DC}\Leftrightarrow\dfrac{BD}{BP}=\dfrac{DN}{BD}\) (5)
\(\Leftrightarrow BD.BD=BP.DN\)
\(\) \(\) \(\Leftrightarrow BD^2=BP.DN\)
b/
Xét ∆DBN và ∆BPD có: \(\dfrac{BD}{BP}=\dfrac{DN}{BD}\) (từ 5)
góc PBD = góc NDB (=60o)
Nên ∆DBN đồng dạng với ∆BPD (c.g.c)
c/
Vì ∆DBN đồng dạng với ∆BPD nên góc DBN = góc BPD
Xét ∆BMD và ∆PBD có:
góc BMD = góc BPD (cmt)
góc MDB: góc chung
Nên ∆BMD đồng dạng với ∆PBD (g.g)
Do vậy góc BMD = góc PBD = 60o
d/
Xét ∆PAD và ∆PMD có: góc APD = góc MPB (đối đỉnh)
góc PAN = PMB (=60o)
Nên ∆PAD đồng dạng với ∆PMD (g.g)
Do vậy \(\dfrac{PA}{PD}=\dfrac{PM}{PB}\Leftrightarrow PA.PB=PD.PM\)
ở câu c xét tam giác BMD vs tam giác BPD
góc BMD = góc BDD (cmt) ????????
a: Xét ΔPBC và ΔPAN có
góc PBC=góc PAN
BP=AP
góc BPC=góc APN
=>ΔPBC=ΔPAN
=>PN=PC
=>P là trung điểm của CN
b: Xét ΔDNC và ΔBCP có
góc NDC=góc PBC
góc DNC=góc PCB
=>ΔDNC đồng dạng vói ΔBCP