K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2017

A B C D E F N M O

xét tam giác ADF vuông tại D

tam giác BAE vuông tại A

có AB = AD ( t/c Hvuông)

AE = DF ( GT)

=> \(\Delta ADF=\Delta BAE\) ( 2cgv)

=> \(\widehat{B_1}=\widehat{A_1}\) (2 góc t/ư)

b) có AB // CD (t/c Hvuông)

=> \(\widehat{A_2}=\widehat{AFD}\) (2 góc SLT)

tam giác ADF có \(\widehat{D}=90^0\)=>\(\widehat{A_1}+\widehat{AFD}=90^0\)

\(\widehat{B_1}=\widehat{A_1},\widehat{A_2}=\widehat{AFD}\) (cmt)

=>\(\widehat{A_2}+\widehat{B_1}=90^0\)

tam giác ABO có \(\widehat{A_2}+\widehat{B_1}+\widehat{AOB}=180^0\) (tổng 3 góc trong 1 tam giác)

=>\(\widehat{AOB}=180^0-90^0=90^0\)

=> AF vuông góc vs OB

hay AF vuông góc vs EB (1)

có MN là đường trung bình của tam giác EBF(vì M là trug điểm EF, N là trung điểm BF) => MN // EB (2)

từ (1) và (2) => MN vuông góc vs AF

3 tháng 11 2017

A B C D E F M N O 2 1 1

17 tháng 2 2022

a) -Có: \(\dfrac{DF}{DC}=\dfrac{1}{3}\) mà \(AE+EB=AB\) nên \(\dfrac{CF}{DC}=\dfrac{2}{3}\).

\(AB=DC\)(ABCD là hình thoi) \(\Rightarrow\dfrac{CF}{AB}=\dfrac{2}{3}\)

Mà \(\dfrac{AE}{AB}=\dfrac{2}{3}\) (gt) nên \(AE=CF\).

Mà EB//DF (ABCD là hình thoi) nên \(AECF\) là hình hình bình.

-Tương tự như vậy, EBFD là hình bình hành.

b) -Có: \(\dfrac{AE}{AB}=\dfrac{2}{3}\) mà \(AE+EB=AB\) nên \(\dfrac{EB}{AB}=\dfrac{1}{3}\Rightarrow\dfrac{EB}{AE}=\dfrac{1}{2}\).

-Có: \(\dfrac{DF}{DC}=\dfrac{1}{3}\) mà \(\dfrac{EB}{DC}=\dfrac{1}{3}\left(\dfrac{EB}{AB}=\dfrac{1}{3};AB=CD\right)\)

\(\Rightarrow DF=EB\) nên \(\dfrac{DF}{AE}=\dfrac{1}{2}\).

-Xét △AEH có: DF//AE (ABCD là hình thoi).

\(\Rightarrow\dfrac{DF}{AE}=\dfrac{HD}{HA}=\dfrac{DH}{AH}=\dfrac{1}{2}\) (định lí Ta-let).

c) -Có \(\dfrac{DH}{AH}=\dfrac{1}{2}\) nên D là trung điểm AH.

\(\Rightarrow AD=DH=CD=\dfrac{1}{2}AH\)

-Xét △ACH có:

CD là trung tuyến ứng với cạnh AH (D là trung điểm AH)

Mà \(CD=\dfrac{1}{2}AH\) (cmt)

Nên △ACH vuông tại C.

\(\Rightarrow\) HC vuông góc với AC.

-Gọi G là giao điểm của CD và BH.

-Có \(DH=CD\) (cmt) và \(CD=BC\) (ABCD là hình thoi)

Nên \(DH=BC\) mà DH//BC (ABCD là hình thoi).

\(\Rightarrow\) BDHC là hình bình hành.

-Mà  G là giao điểm của CD và BH nên G là trung điểm CD và BH

\(\Rightarrow GD=\dfrac{1}{2}DC=\dfrac{1}{2}.3DF=\dfrac{3}{2}DF\)

\(\Rightarrow DF=\dfrac{2}{3}GD\).

-Xét △HDB có: 

DG là trung tuyến (G là trung điểm BH).

F thuộc DG.

\(DF=\dfrac{2}{3}GD\) (cmt).

Nên F là trọng tâm của tam giác HDB.

25 tháng 11 2018

Bài 1:

Do E là hình chiếu của D trên AB:

=) DE\(\perp\)AB tại E

=) \(\widehat{DE\text{A}}\)=900

Do F là hình chiếu của D trên AC:

=) DF\(\perp\)AC

=) \(\widehat{DFA}\)=900

Xét tứ giác AEDF có :

\(\widehat{D\text{E}F}\)=\(\widehat{E\text{A}F}\)=\(\widehat{DFA}\) (cùng bằng 900)

=) Tứ giác AEDF là hình chữ nhật

Xét hình chữ nhật AEDF có :

AD là tia phân giác của \(\widehat{E\text{A}F}\)

=) AEDF là hình vuông

25 tháng 11 2018

cảm ơn bạn ngọc nguyễn

\(\sqrt{a}=\sqrt{5}\)

chắc sai rùi ko đúng đâu

16 tháng 3 2016

sai đề hả