Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Có BC//AD (tính chất hình thoi)
Nên \(\widehat{MBC}=\widehat{A}=\widehat{CDN}\)(cách cặp góc đồng vị)
\(\widehat{BCM}=\widehat{DNC}\)(góc đồng vị)
=> \(\Delta\)MBC đồng dạng với \(\Delta\)CDN (g-g)
=> \(\frac{BM}{DC}=\frac{BC}{DN}\)
=> BM.ND=BC.DC=a2(không đổi)
b) \(\Delta\)BCD đều (Do BC=CD và \(\widehat{C}=60^o\)) nên BD=DC=BC
Ta có: \(\frac{BM}{DC}=\frac{BC}{DN}\left(a\right)\Rightarrow\frac{BM}{BD}=\frac{DB}{DN}\)
Lại có: \(\widehat{MBD}=\widehat{BDN}=120^o\)(kề bù với các góc của tam giác đều ABD)
=> \(\Delta BMD=\Delta DBN\left(c.g.c\right)\)
\(\Rightarrow\widehat{AMD}=\widehat{DBN}\)(2 góc tương ứng)
Xét tam giác BKD và tam giác MBD có: \(\widehat{AMD}=\widehat{DBN}\left(cmt\right)\); \(\widehat{BDM}\)chung
=> Tam giác BKD đồng dạng với tam giác MBD (g-g)
\(\Rightarrow\widehat{BKD}=\widehat{MBD}=120^o\)
a) Vì FE là ĐTB của hình thang => FE//AB//CD
E, F là trung bình của AD và BC nên AK = KC
=> IC = ID
P/s: ko chắc
a: Xét hình thang ABCD có MN//AB//CD
nên AM/MN=BN/NC
=>AM/AD=BN/BC(1)
Xét ΔADC có MO//DC
nên MO/DC=AM/AB(2)
Xét ΔBDC có ON//DC
nên ON/DC=BN/BC(3)
Từ (1), (2) và (3) suy ra MO=ON(đpcm)
b:
Để \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{MN}\) thì \(\dfrac{MN}{AB}+\dfrac{MN}{CD}=2\)
MN=2ON=2OM
\(\dfrac{2OM}{AB}+\dfrac{2ON}{CD}=2\left(\dfrac{OM}{AB}+\dfrac{ON}{CD}\right)\)
mà OM/AB=DO/DB
và ON/CD=BO/BD
nên \(VT=2\cdot\left(\dfrac{DO}{DB}+\dfrac{BO}{DB}\right)=2\left(đpcm\right)\)