K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2017

Gọi I là giao điểm của hai đường chéo của hình thoi. Chứng minh P là trọng tâm của ∆ABC

Kẻ PQ//AI => BQ = 2 3 AB => Q Cố định => P thuộc đường tròn đường kính QB

20 tháng 1 2020

ÔNG CHOI MOPE.IO dúng ko tui gap ong nek

21 tháng 1 2020

MOPE.IO là cái l gì thế

3 tháng 5 2018

a. Ta có: \(\widehat{ADB}=90^o\)(góc nội tiếp chắn nửa đường tròn) => \(\widehat{ADE}=90^o\)

Lại có: \(CH\perp AB\)tại H (gt)  mà E \(\in CH\)(do  E là giao điểm của BD và CH (gt)) => \(\widehat{EHA}=90^o\) 

Xét tứ giác ADEH có: \(\widehat{ADE}+\widehat{EHA}=90^o+90^o=180^o\)=> tứ giác ADEH nội tiếp (DHNB) => đpcm

b.

Ta có: \(\widehat{ACB}=90^o\)(góc nội tiếp chắn nữa đường tròn) => \(\Delta ABC\)vuông tại C

=> \(S\Delta ABC=\frac{1}{2}AC\times BC=\frac{1}{2}CH\times AB\)=> CH = \(\frac{AC\times BC}{AB}\)

=> \(AC\times AH+CB\times CH=AC\times AH+CB\times\frac{AC\times BC}{AB}\)\(AC\times(AH+\frac{BC^2}{AB})=AC\times\frac{(AH\times AB+BC^2)}{AB}\)(1)

Áp dụng hệ thức lượng trong \(\Delta ABC\)vuông tại C với đường cao CH ta được: AH \(\times AB=AC^2\)(2)

Áp dụng định lý pitago trong \(\Delta ABC\)vuông tại C ta được: \(AC^2+BC^2=AB^2\)(3)

Thế (2) và (3) vào (1) ta được : \(AC\times AH+CB\times CH=AB\times AC\)(ĐPCM)

c. Gọi K là điểm chính giữa cung AB (K nằm cùng phía với C so với bờ AB) => K là điểm cố định và \(KO\perp AB\)tại O => KO // CH => \(\widehat{KOC}=\widehat{KOM}=\widehat{HCO}\)(So le trong)

Nối K với M 

Xét \(\Delta KOM\)và \(\Delta OCH\)có:

+ KO = OC = R

\(\widehat{KOM}=\widehat{HCO}\)(cmt)

+ OM = CH (gt) 

=> \(\Delta KOM=\Delta OCH\)(c.g.c) => \(\widehat{KMO}=\widehat{OHC}=90^o\Rightarrow\Delta KOM\)vuông tại M => M \(\in(I,\frac{OK}{2})\)cố định (trong đó I là trung điểm của OK)

21 tháng 4 2015

a) góc MAN nội tiếp chắn nửa (O) => góc MAN = 900 hay góc CAD = 900

tam giác CAD vuông tại A có đường cao AB => AM.AC = AB2 = 4R2 không đổi

b) Tam giác OAN có OA = ON = R nên cân tại O => góc OAN = góc ONA hay góc BAD = góc MNA

mà góc BAD = góc ACD (cùng phụ góc BAC) => góc MNA = góc ACD => tứ giác CMND nội tiếp

c) tam giác ACD vuông tại A có AI là trung tuyến => IA = ID = 1/2 CD => tam giác IAD cân tại I => góc IAD = góc IDA

mà góc IDA = góc AMN( tứ giác CMND nội tiếp) => góc IAD = góc AMN mà góc AMD phụ góc MNA => góc IAD phụ góc MNA 

=> góc AHN = 90hay góc AHO = 900 , mà OA = R không đổi => H nằm trên đường tròn đường kính AO

30 tháng 3 2017

a﴿ góc MAN nội tiếp chắn nửa ﴾O﴿ => góc MAN = 90o hay góc CAD = 90o

tam giác CAD vuông tại A có đường cao AB => AM.AC = AB 2 = 4R 2 không đổi

b﴿ Tam giác OAN có OA = ON = R nên cân tại O => góc OAN = góc ONA hay góc BAD = góc MNA

mà góc BAD = góc ACD ﴾cùng phụ góc BAC﴿ => góc MNA = góc ACD => tứ giác CMND nội tiếp

c﴿ tam giác ACD vuông tại A có AI là trung tuyến => IA = ID = 1/2 CD => tam giác IAD cân tại I => góc IAD = góc IDA

mà góc IDA = góc AMN﴾ tứ giác CMND nội tiếp﴿

=> góc IAD = góc AMN mà góc AMD phụ góc MNA => góc IAD phụ góc MNA

=> góc AHN = 90 0 hay góc AHO = 90 0 , mà OA = R không đổi => H nằm trên đường tròn đường kính AO