Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đầu bài chỗ " đường chéo BD cắt AE" chắc là " đường chéo BD cắt AI" phải không bn???
a) ta có: AB = CD ( ABCD là h.b.h)
=> AK = IC \(\left(=\frac{1}{2}AB=\frac{1}{2}CD\right)\)
mà AK // IC
=> AKCI là hình bình hành ( dấu hiệu)
xét \(\Delta DFC\)
có: DI =IC (gt)
EI // FC ( AKCI là h.b.h)
=> EI là đường trung bình của \(\Delta DFC\)
=> DE = EF ( t/c')
cmtt với \(\Delta AEB\)ta có: EF = FB
=> DE=EF=FB
b) xét \(\Delta ABD\)
có: AM=MD
AK=KB
=> KM là đường trung bình của \(\Delta ABD\)
=> KM // BD và \(KM=\frac{1}{2}BD\)
cmtt với \(\Delta BCD\)ta có: IN//BD và \(IN=\frac{1}{2}BD\)
=> KM // IN (//BD)
\(KM=IN\left(=\frac{1}{2}BD\right)\)
=> KMIN là hình bình hành ( dấu hiệu)
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét ΔAEM có
E là trung điểm của AB
EN//AM
Do đó; N là trung điểm của BM
=>BN=NM(1)
Xét ΔDNC có
F là trung điểm của DC
FM//NC
Do đó: M là trung điểm của DN
=>DM=MN(2)
Từ (1) và (2) suy ra DM=MN=NB
c: Xét ΔADM và ΔCBN có
AD=CB
\(\widehat{ADM}=\widehat{CBN}\)
DM=BN
Do đó: ΔADM=ΔCBN
Suy ra: AM=CN
mà EN=AM/2
và MF=CN/2
nên EN=MF
Xét tứ giác MENF có
NE//MF
NE=MF
Do đó: MENF là hình bình hành
Gọi O là giao điểm của AC và BD
⇒ O là trung điểm của AC và BD
Xét ΔABC có AM và BO là trung tuyến
⇒ E là trọng tâm
=> BE=2OE
Tương tự ta có: DF=2OF
mà OD=OB (do O là trung điểm của BD)
=> BE=EF=DF
a) Ta có: DF=FE=CE(gt)
mà DF+FE+CE=DC
nên \(DF=FE=CE=\dfrac{DC}{3}\)
Xét tứ giác ABFD có
AB//FD(gt)
AB=FD
Do đó: ABFD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Xét tứ giác ABEF có
AB//EF(gt)
AB=EF(cmt)
Do đó: ABEF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: AF=BE(Hai cạnh đối)
c) Xét tứ giác ABCE có
AB//CE
AB=CE
Do đó: ABCE là hình bình hành
Suy ra: AE=BC
Xin phép ad cho em tách ạ,nguyên 1 câu khá là dài,hihi
TK
a, Gọi O là giao điểm hai đường chéo của hình bình hành ABCD
=> O là trung điểm của AC và BD
hay OA = OC và OD = OB
Xét tam giác ADC có:
AF là đường trung tuyến ( F là trung điểm của DC)
DO là đường trung tuyến ( OA=OC)
Hai đường trung tuyến này cắt nhau tại M
=> M là trọng tâm của tam giác ADC
Tương tự, xét tam giác ABC có:
AE là đường trung tuyến ( E là trung điểm của BC)
BO là đường trung tuyến ( OA=OC)
Hai đường trung tuyến cắt nhau tại N
=> N là trọng tâm của tam giác ABC
b,
Nối M với C ; N với C
Có OM = 1313 OD
ON = 1313 OB
mà OD = OB (cm câu a)
=> OM = ON
Xét tứ giác ANCM có:
OM = ON (cmt)
OA = OC (cm câu a)
=> tứ giác ANCM là hình bình hành
=> AM//CN hay AF//CN
Xét ΔΔ DNC có:
DF=CF (gt)
MF//CN (AF//CN)
=> DM = MN (1)
Gọi I là giao điểm của EF và MC
Xét ΔΔ BCD có:
DF = CF (gt)
BE = CE (gt)
=> EF là đường trung bình của ΔΔ BCD
=> EF//BD
hay EI//BD
Xét ΔΔ BMC có:
EI//BM ( M∈∈ BD)
BE = CE (gt)
=> MN = NB (2)
Hầy chỗ này bạn viết đề sai nữa rồi! phải là DM = MN = NB hoặc ngược lại
Từ (1) và (2) suy ra :
DM = MN =NB (đpcm)
A B C D E F M N
a/
Xét tg ABE và tg CDF có
BE=FD (gt)
AB=CD (cạnh đối hbh)
\(\widehat{ABE}=\widehat{CDF}\) (góc so le trong)
=> tg ABE = tg CDF (c.g.c) => AE=CF (1)
Chứng minh tương tự ta cũng có tg ADF = tg BCE
=> AF=CE (2)
Từ (1) (2) => AECF là hbh (Tứ giác có các cặp cạnh đối bằng nhau từng đôi 1)
b/
Xét tg BCF có
BE=EF
EM//CF
=> MB=MC (trong tg đường thẳng // với 1 cạnh và đi qua trung điểm 1 cạnh thì đi qua trung điểm cạnh còn lại)
C/m tương tự khi xét tg CDE => NC=ND
c/
Ta có
\(BE=EF=FD=\dfrac{BD}{3}\Rightarrow BD=3.FE\)
Xét tg BCD có
MB=MC; NC=ND => MN là đường trung bình của tg BCD
\(\Rightarrow MN=\dfrac{BD}{2}=\dfrac{3.EF}{2}\)