K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2022

A B C D E F M N

a/

Xét tg ABE và tg CDF có

BE=FD (gt)

AB=CD (cạnh đối hbh)

\(\widehat{ABE}=\widehat{CDF}\) (góc so le trong)

=> tg ABE = tg CDF (c.g.c) => AE=CF (1)

Chứng minh tương tự ta cũng có tg ADF = tg BCE

=> AF=CE (2)

Từ (1) (2) => AECF là hbh (Tứ giác có các cặp cạnh đối bằng nhau từng đôi 1)

b/

Xét tg BCF có

BE=EF

EM//CF 

=> MB=MC (trong tg đường thẳng // với 1 cạnh và đi qua trung điểm 1 cạnh thì đi qua trung điểm cạnh còn lại)

C/m tương tự khi xét tg CDE => NC=ND

c/

Ta có

\(BE=EF=FD=\dfrac{BD}{3}\Rightarrow BD=3.FE\)

Xét tg BCD có

MB=MC; NC=ND => MN là đường trung bình của tg BCD

\(\Rightarrow MN=\dfrac{BD}{2}=\dfrac{3.EF}{2}\)

17 tháng 10 2020

đầu bài chỗ " đường chéo BD cắt AE" chắc là " đường chéo BD cắt AI" phải không bn???

a) ta có: AB = CD ( ABCD là h.b.h)

=> AK = IC \(\left(=\frac{1}{2}AB=\frac{1}{2}CD\right)\)

mà AK // IC

=> AKCI là hình bình hành ( dấu hiệu)

xét \(\Delta DFC\)

có: DI =IC (gt)

EI // FC ( AKCI là h.b.h)

=> EI là đường trung bình của \(\Delta DFC\)

=> DE = EF ( t/c')

cmtt với \(\Delta AEB\)ta có: EF = FB

=> DE=EF=FB

b) xét \(\Delta ABD\)

có: AM=MD

AK=KB

=> KM là đường trung bình của \(\Delta ABD\)

=> KM // BD và \(KM=\frac{1}{2}BD\)

cmtt với \(\Delta BCD\)ta có: IN//BD và \(IN=\frac{1}{2}BD\)

=> KM // IN (//BD)

\(KM=IN\left(=\frac{1}{2}BD\right)\)

=> KMIN là hình bình hành ( dấu hiệu)

a: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét ΔAEM có 

E là trung điểm của AB

EN//AM

Do đó; N là trung điểm của BM

=>BN=NM(1)

Xét ΔDNC có 

F là trung điểm của DC

FM//NC

Do đó: M là trung điểm của DN

=>DM=MN(2)

Từ (1) và (2) suy ra DM=MN=NB

c: Xét ΔADM và ΔCBN có

AD=CB

\(\widehat{ADM}=\widehat{CBN}\)

DM=BN

Do đó: ΔADM=ΔCBN

Suy ra: AM=CN

mà EN=AM/2

và MF=CN/2

nên EN=MF

Xét tứ giác MENF có

NE//MF

NE=MF

Do đó: MENF là hình bình hành

5 tháng 9 2021

Gọi O là giao điểm của AC và BD

 ⇒ O là trung điểm của AC và BD

Xét ΔABC có AM và BO là trung tuyến 

  ⇒ E là trọng tâm

 => BE=2OE

Tương tự ta có: DF=2OF

mà OD=OB (do O là trung điểm của BD)

 => BE=EF=DF

a) Ta có: DF=FE=CE(gt)

mà DF+FE+CE=DC

nên \(DF=FE=CE=\dfrac{DC}{3}\)

Xét tứ giác ABFD có 

AB//FD(gt)

AB=FD

Do đó: ABFD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Xét tứ giác ABEF có 

AB//EF(gt)

AB=EF(cmt)

Do đó: ABEF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: AF=BE(Hai cạnh đối)

c) Xét tứ giác ABCE có 

AB//CE

AB=CE

Do đó: ABCE là hình bình hành

Suy ra: AE=BC

1 tháng 3 2020

Xin phép ad cho em tách ạ,nguyên 1 câu khá  là dài,hihi

1 tháng 3 2020

Nãy bận xíu :D

Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F saocho AE=EF=FC.a) Tứ giác BEDF là hình gì?b) Chứng minh tam giác CFD= tam giác AEBc) Chứng minh tam giác CFB= tam giác EADBài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.a) Xác định D sao cho BDCA là hình vuông.b) Tính độ dài DA.c) Tính diện tích ABCD.Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.a) Xác định O để ABCD là hình bình...
Đọc tiếp

Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh tam giác CFD= tam giác AEB
c) Chứng minh tam giác CFB= tam giác EAD

Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?

Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông góc
với nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tia
đối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.
a) Chứng minh các tam giác APS, AQR là các tam giác cân.
b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.
Chứng minh tứ giác AMHN là hình chữ nhật.
Bài 14: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CA,
AD.
a) Tứ giác MNPQ là hình gì?
b) Gọi M là trung điểm của DB, AD=6, AB=8. Cho DBAM. Tính QM.
Bài 15: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Lấy điểm E đối xứng với M qua N. Chứng minh tứ giác AECM là hình bình
hành.
c) Tứ giác BMEC là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECM là hình vuông? Vẽ
hình minh hoạ.

Mong mn giúp mk vs ah

1

đây là nhóm hỏi những bài khó chứ không phải nơi chép bài của những bạn lười nhé

29 tháng 10 2021

Bạn nói hay đó

Đc của ló

 

B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.1) C/m : tứ giác AMND là hình bình hành.2) C/m: tứ giác AMCN là hình bình hành.B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.1) C/m: O là trung điểm của EF.2) C/m: tứ  giác AECF là hình bình hành3) C/m: tứ giác BDEF là hình bình hành.B3: cho hình bình...
Đọc tiếp

B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.

1) C/m : tứ giác AMND là hình bình hành.

2) C/m: tứ giác AMCN là hình bình hành.

B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.

1) C/m: O là trung điểm của EF.

2) C/m: tứ  giác AECF là hình bình hành

3) C/m: tứ giác BDEF là hình bình hành.

B3: cho hình bình hành ABCD. Trên cạnh AB lấy điểm E, trên cạnh CD lấy điểm F sao cho AE=CF. Gọi O là giao điểm của AC và BD.

1) C/m: tứ giác AECF là hình bình hành.

2) C/m: O là trung điểm của EF.

B4: Cho hình bình hành ABCD có hai đường chéo AB và CD cắt nhau tại O. Gọi M,N,P,Q lần lượt là tủng điểm của các đoạn OA, OB, OC, OD.

1)C/m : tứ giác MNPQ là hình bình hành.

2) C/m: các tứ giác ANCQ , BPDM là các hình bình hành.

Giúp mik với nha, thanks !!!!

3
20 tháng 8 2017

đã hỏi thì hỏi ít thôi. hỏi lắm thế

20 tháng 8 2017

hỏi 1 lần luôn cho lẹ, k cần mn giải hết đâu, biết bài nào thì giải giúp th

1 tháng 12 2021

TK

a, Gọi O là giao điểm hai đường chéo của hình bình hành ABCD

=> O là trung điểm của AC và BD

hay OA = OC và OD = OB

Xét tam giác ADC có:

AF là đường trung tuyến ( F là trung điểm của DC)

DO là đường trung tuyến ( OA=OC)

Hai đường trung tuyến này cắt nhau tại M

=> M là trọng tâm của tam giác ADC

Tương tự, xét tam giác ABC có:

AE là đường trung tuyến ( E là trung điểm của BC)

BO là đường trung tuyến ( OA=OC)

Hai đường trung tuyến cắt nhau tại N

=> N là trọng tâm của tam giác ABC

b, 

Nối M với C ; N với C

Có OM = 1313 OD

ON = 1313 OB

mà OD = OB (cm câu a)

=> OM = ON

Xét tứ giác ANCM có:

OM = ON (cmt)

OA = OC (cm câu a)

=> tứ giác ANCM là hình bình hành

=> AM//CN hay AF//CN

Xét ΔΔ DNC có:

DF=CF (gt)

MF//CN (AF//CN)

=> DM = MN (1)

Gọi I là giao điểm của EF và MC

Xét ΔΔ BCD có:

DF = CF (gt)

BE = CE (gt)

=> EF là đường trung bình của ΔΔ BCD

=> EF//BD

hay EI//BD

Xét ΔΔ BMC có:

EI//BM ( M∈∈ BD)

BE = CE (gt)

=> MN = NB (2)

Hầy chỗ này bạn viết đề sai nữa rồi! phải là DM = MN = NB hoặc ngược lại

Từ (1) và (2) suy ra :

DM = MN =NB (đpcm)

 

1 tháng 12 2021

hơi dài