Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AD vuông AB (gt)
MH vg AB (gt)
BC vg AB (gt)
=> MH // AD // BC (1)
MD = MC (gt) (2)
(1)(2)=> I là trung điểm BD
H là TĐ AB
MI là đường trung bình tam giác BDC
IH là đg TB tg ABD
=> HI = AD/2 = 16/2 = 8 cm
MI = BC/2 <=> BC = 2MI
MH - IH = MC = 10 cm (gt)
=> BC = 20 cm
a)
Lấy K làm trung điểm của BC
=> MK là đường trung bình của hình thang ABCD
\(\Rightarrow MK=\frac{AB+CD}{2}\)(*)
Tam giác MBC vuông tại M, MK là trung tuyến
\(\Rightarrow MK=\frac{BC}{2}\)(**)
Từ (*) và (**) => AB + CD = BC
b)
Ta có:
\(\widehat{HMC}=\widehat{MBC}=\widehat{KBM}\)
\(\widehat{KMB}=\widehat{KBM}\)
\(\widehat{KMB}=\widehat{DMC}\)
\(\Rightarrow\widehat{HMC}=\widehat{DCM}\)
Ta có:
\(\widehat{HMC}=\widehat{DCM}\)
\(\widehat{MDC}=\widehat{MHC}=90^o\Rightarrow\Delta HMC=\Delta DMC\left(ch-gn\right)\)
\(MC\)chung \(\Rightarrow MH=MD;CH=CD\)
=> MC là đường trung trực của DH => \(MC\perp DH\)và \(MB\perp MC\)
\(\Rightarrow DH//MB\Rightarrow MBHD\)là hình thang
Xét ΔIAB và ΔICD có
góc IAB=góc ICD
goc AIB=góc CID
=>ΔIAB đồng dạng với ΔICD
=>IB/ID=AB/CD=BM/MC
=>IM//DC
=>IM vuông góc AD
a: Sửađề: góc A=góc D=90 độ
Xét tứ giá ABKD có
AB//KD
AD//BK
góc ADK=90 độ
=>ABKD là hình chữ nhật
DK=AB=4cm
=>KC=5cm
=>\(BK=\sqrt{13^2-5^2}=12\left(cm\right)\)
=>AD=12cm
b: Xet ΔIDC có AB//DC
nên IA/ID=AB/DC
=>IA/IA+12=4/9
=>9IA=4IA+48
=>5AI=48
=>AI=9,6cm
IM=9,6+6=15,6cm
c: Xet ΔIMH vuông tại H và ΔBCK vuông tại K co
góc I=góc CBK
=>ΔIMH đồng dạng với ΔBCK
=>MH/CK=IM/BC
=>MH/5=15,6/13=6/5
=>MH=6cm