Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AC=\sqrt{AB^2+BC^2}=a\sqrt{5}\)
\(BD=\sqrt{AD^2+AB^2}=a\sqrt{2}\)
\(\overrightarrow{AC}.\overrightarrow{BD}=\left(\overrightarrow{AB}+\overrightarrow{BC}\right)\left(\overrightarrow{BA}+\overrightarrow{AD}\right)\)
\(=-\overrightarrow{AB}^2+\overrightarrow{AB}.\overrightarrow{AD}+\overrightarrow{BC}.\overrightarrow{BA}+\overrightarrow{BC}.\overrightarrow{AD}\)
\(=-\overrightarrow{AB}^2+\overrightarrow{AD}.2\overrightarrow{AD}=-\overrightarrow{AB}^2+2\overrightarrow{AD}^2\)
\(=-a^2+2a^2=a^2\)
\(cos\left(\overrightarrow{AC};\overrightarrow{BD}\right)=\dfrac{\overrightarrow{AC}.\overrightarrow{BD}}{AC.BD}=\dfrac{a^2}{a\sqrt{2}.a\sqrt{5}}=\dfrac{1}{\sqrt{10}}\)
a) \(\overrightarrow {AC} + \overrightarrow {BD} = \overrightarrow {AM} + \overrightarrow {MN} + \overrightarrow {NC} + \overrightarrow {BM} + \overrightarrow {MN} + \overrightarrow {ND} \\= \left( {\overrightarrow {AM} + \overrightarrow {BM} } \right) + \left( {\overrightarrow {MN} + \overrightarrow {MN} } \right) + \left( {\overrightarrow {NC} + \overrightarrow {ND} } \right) \\= \overrightarrow 0 + 2\overrightarrow {MN} + \overrightarrow 0 = 2\overrightarrow {MN} \) (đpcm)
b) \(\overrightarrow {AC} + \overrightarrow {BD} = \overrightarrow {BC} + \overrightarrow {AD} \)
\(\)\(\overrightarrow {BC} + \overrightarrow {AD} = \overrightarrow {BM} + \overrightarrow {MN} + \overrightarrow {NC} + \overrightarrow {AM} + \overrightarrow {MN} + \overrightarrow {ND} \)
\(\left( {\overrightarrow {BM} + \overrightarrow {AM} } \right) + \left( {\overrightarrow {MN} + \overrightarrow {MN} } \right) + \left( {\overrightarrow {NC} + \overrightarrow {ND} } \right) = 2\overrightarrow {MN} \)
Mặt khác ta có: \(\overrightarrow {AC} + \overrightarrow {BD} = 2\overrightarrow {MN} \)
Suy ra \(\overrightarrow {AC} + \overrightarrow {BD} = \overrightarrow {BC} + \overrightarrow {AD} \)
Cách 2:
\(\begin{array}{l}
\overrightarrow {AC} + \overrightarrow {BD} = \overrightarrow {BC} + \overrightarrow {AD} \\
\Leftrightarrow \overrightarrow {AC} - \overrightarrow {AD} = \overrightarrow {BC} - \overrightarrow {BD} \\
\Leftrightarrow \overrightarrow {DC} = \overrightarrow {DC} (đpcm)
\end{array}\)
Tất cả biểu thức đều là vecto, cái nào là độ dài thì nằm trong trị tuyệt đối:
\(\left|BD\right|=\sqrt{AB^2+AD^2}=a\sqrt{5}\)
\(\left|AC\right|=\sqrt{AB^2+BC^2}=a\sqrt{13}\)
a/ \(AB.BD=-BA.BD=-\left|AB\right|.\left|BD\right|.cos\widehat{ABD}\)
\(=-2a.a\sqrt{5}.\frac{2a}{a\sqrt{5}}=-4a^2\)
\(BC.BD=\left|BC\right|.\left|BD\right|.cos\widehat{DBC}=3a.a\sqrt{5}.\frac{a}{a\sqrt{5}}=3a^2\)
\(AC.BD=AC\left(BA+AD\right)=AC.BA+AC.AD\)
\(=AC.AD-AC.AB=\left|AC\right|.\left|AD\right|.cos\widehat{DAC}-\left|AB\right|.\left|AC\right|.cos\widehat{BAC}\)
\(=a.a\sqrt{13}.\frac{3a}{a\sqrt{13}}-2a.a\sqrt{13}.\frac{2a}{a\sqrt{13}}=-a^2\)
\(AC.IJ=\frac{1}{2}AC\left(AD+BC\right)=\frac{1}{2}AC.AD+\frac{1}{2}AC.BC\)
Ta có \(AC.AD=3a^2\) (ngay bên trên)
\(AC.BC=CA.CB=\left|CA\right|.\left|CB\right|.cos\widehat{BCA}=a\sqrt{13}.3a.\frac{3a}{a\sqrt{13}}=9a^2\)
\(\Rightarrow AC.IJ=6a^2\)
Ta có:
\(\overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AD} + \overrightarrow {DN} \)
Mặt khác: \(\overrightarrow {MN} = \overrightarrow {MB} + \overrightarrow {BC} + \overrightarrow {CN} \)
\(\begin{array}{l} \Rightarrow 2\overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AD} + \overrightarrow {DN} + \overrightarrow {MB} + \overrightarrow {BC} + \overrightarrow {CN} \\ \Leftrightarrow 2\overrightarrow {MN} = \left( {\overrightarrow {MA} + \overrightarrow {MB} } \right) + \left( {\overrightarrow {DN} + \overrightarrow {CN} } \right) + \overrightarrow {BC} + \overrightarrow {AD} \\ \Leftrightarrow 2\overrightarrow {MN} = \overrightarrow 0 + \overrightarrow 0 + \overrightarrow {BC} + \overrightarrow {AD} \\ \Leftrightarrow 2\overrightarrow {MN} = \overrightarrow {BC} + \overrightarrow {AD} \end{array}\)
Lại có:
\(\overrightarrow {BC} + \overrightarrow {AD} = \overrightarrow {BD} + \overrightarrow {DC} + \overrightarrow {AD} = \overrightarrow {AD} + \overrightarrow {DC} + \overrightarrow {BD} = \overrightarrow {AC} + \overrightarrow {BD} .\)
Vậy \(\overrightarrow {BC} + \overrightarrow {AD} = 2\overrightarrow {MN} = \;\overrightarrow {AC} + \overrightarrow {BD} .\)
a) Do ABCD cũng là một hình bình hành nên \(\overrightarrow {DA} + \overrightarrow {DC} = \overrightarrow {DB} \)
\( \Rightarrow \;|\overrightarrow {DA} + \overrightarrow {DC} |\; = \;|\overrightarrow {DB} |\; = DB = a\sqrt 2 \)
b) Ta có: \(\overrightarrow {AD} + \overrightarrow {DB} = \overrightarrow {AB} \) \( \Rightarrow \overrightarrow {AB} - \overrightarrow {AD} = \overrightarrow {DB} \)
\( \Rightarrow \left| {\overrightarrow {AB} - \overrightarrow {AD} } \right| = \left| {\overrightarrow {DB} } \right| = DB = a\sqrt 2 \)
c) Ta có: \(\overrightarrow {DO} = \overrightarrow {OB} \)
\( \Rightarrow \overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow {OA} + \overrightarrow {DO} = \overrightarrow {DO} + \overrightarrow {OA} = \overrightarrow {DA} \)
\( \Rightarrow \left| {\overrightarrow {OA} + \overrightarrow {OB} } \right| = \left| {\overrightarrow {DA} } \right| = DA = a.\)
a: AB=BC=CD=DA=6a
\(AC=BD=\sqrt{\left(6a\right)^2+\left(6a\right)^2}=6a\sqrt{2}\)
\(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=CB=6a\)
\(\left|\overrightarrow{BC}+\overrightarrow{BD}\right|=\sqrt{BC^2+BD^2+2\cdot BC\cdot BD\cdot cos45}\)
\(=\sqrt{36a^2+72a^2+\sqrt{2}\cdot6a\cdot6a\sqrt{2}}\)
\(=6a\sqrt{5}\)
b: \(\overrightarrow{AB}\cdot\overrightarrow{AC}=AB\cdot AC\cdot cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=6a\cdot6a\sqrt{2}\cdot\dfrac{\sqrt{2}}{2}\)
\(=36a^2\)