\(⊥\)với cạnh bên BC tại B. 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2021

a) Vì tứ giác ABCD là hình thang vuông 

=> AB song song CD

=> góc ABD = góc BDC

Xét tam giác ABD và tam giác BDC có:

góc BAD = góc CBD (=90*)

Góc ABD = Góc BDC ( cmt)

=> tam giác ABD đồng dạng tam giác BDC (g.g)

b) Vì tam giác ABD vuông tại A nên theo ĐL Py-ta-go ta có:

  BD2 = AB2 + AD2

=> BD2 = 4+ 32

=> BD= 25

=> BD = 5 (cm)

Vì tam giác ABD đồng dạng tam giác BDC ( cm ý a)

=> AB/BD = BD/DC ( 2 cặp cạnh tương ứng)

=> 4/5 = 5/DC

=> DC = 6,25

8 tháng 5 2021

c) Kẻ \(AH\perp BD\).

Dẽ thấy:  \(\frac{S_{ADE}}{S_{ABD}}=\frac{\frac{AH.DE}{2}}{\frac{AH.BD}{2}}=\frac{DE}{BD}\).

Vì \(AB//CD\)( do hình thang ABCD vuông tại A và D).

Và E là giao điểm của AC và BD.

\(\Rightarrow\frac{DE}{BE}=\frac{CD}{AB}\)(hệ quả của dịnh lí Ta-lét).

\(\Rightarrow\frac{DE}{BE}=\frac{6,25}{4}=\frac{25}{16}\)(thay số).

\(\Rightarrow\frac{DE}{BE+DE}=\frac{25}{16+25}\)(tính chất của tỉ lệ thức).

\(\Rightarrow\frac{DE}{BD}=\frac{25}{41}\).

Do đó \(\frac{S_{ADE}}{S_{ABD}}=\frac{25}{41}\).

\(\Rightarrow S_{ADE}=\frac{25.S_{ABD}}{41}=\frac{25.\frac{AB.AD}{2}}{41}=\frac{25.\frac{4.3}{2}}{41}\).

\(\Rightarrow S_{ADE}=\frac{25.6}{41}=\frac{150}{41}\left(cm^2\right)\).
vậy \(S_{ADE}=\frac{150}{41}cm^2\).

28 tháng 4 2018

bạn tự vẽ hình nhé 

a) Xét \(\Delta ABD\)và \(\Delta BDC\)có \(\widehat{BAD}=\widehat{CBD}\left(=90\right);\widehat{ADB}=\widehat{BCD}\)(cùng phụ với \(\widehat{BDC}\)

                           \(\Rightarrow\Delta ABD\infty\Delta BDC\left(g.g\right)\)   

b) Áp dụng định lý pytago vào \(\Delta ABD\)có \(BD^2=AB^2+AD^2=16+9=25\Rightarrow BD=5\)              

từ \(\Delta ABD\infty\Delta BDC\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow DC=\frac{BD^2}{AB}=\frac{25}{4}\)

29 tháng 4 2018

-(a+b)^3=-(1)^3=-1 cả hai đều đúng

23 tháng 8 2020

a) Xét 2 tam giác ADB và BCD có:

góc DAB = góc DBC (gt)

góc ABD = góc BDC ( so le trong )

nên tam giác ADB đồng dạng với tam giác BDC.(1)

b) Từ (1) ta được AB/BC = DB/CD = AB/BD

hay ta có; AD/BC = AB/BD <==> 3,5/BC = 2,5/5

==> BC= 3,5*5/2,5 = 7 (cm)

ta cũng có: DB/CD = AB/BD <==> 5/CD = 2,5/5

==> CD = 5*5/2,5 =10 (cm)

c) Từ (1) ta được;

AD/BC = DB/CD = AB/BD hay 3.5/7 = 5/10 = 2,5/5 = 1/2 .

ta nói tam giác ADB đồng giạc với tam giác BCD theo tỉ số đồng dạng là 1/2

mà tỉ số diện tích bằng bình phương tỉ số động dạng

do đó S ADB/ S BCD = (1/2)^2 = 1/4

20 tháng 4 2019

A B C D K O F I E

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E