K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

câu a ) mình nhầm nha \(\Delta AGE\)mới đúng nha các bn

Ai làm đúng nhanh mik tích cho

3 tháng 7 2018

hình vuông nha các bạn ko phải hình thang vuông

20 tháng 3 2021

Vì ABCD là hình vuông (giả thiết).

\(\Rightarrow AB=BC=CD=DA\)(tính chất)

Và \(AB//CD\)(tính chất)  \(\Rightarrow AB//DF\).

Và \(AD//CE\)(tính chất) \(\Rightarrow CE//AD\)

\(AB//DF\)(chứng minh trên)

\(\frac{AB}{AE}=\frac{FC}{FE}\)(hệ quả của định lí Ta-lét)

\(\Rightarrow\frac{AD}{AE}=\frac{FC}{FE}\)(vì \(AB=AD\))

\(\Rightarrow\frac{AD^2}{AE^2}=\frac{FC^2}{FE^2}\left(1\right)\)

Vì \(AB//CF\)(giả thiết)

\(\Rightarrow\frac{BE}{CE}=\frac{AE}{FE}\)(hệ quả của định lí Ta-lét) (2)

\(\Rightarrow\frac{BE}{CE+BE}=\frac{AE}{FE+AE}\)(tính chất của tỉ lệ thức)

\(\Rightarrow\frac{BE}{BC}=\frac{AE}{AF}\)\(\Rightarrow\frac{BE}{AD}=\frac{AE}{AF}\)(vì \(AD=BC\))

\(\Rightarrow\frac{AD}{AF}=\frac{BE}{AE}\)(tính chất của tỉ lệ thức)

Từ (2) \(\Rightarrow\frac{BE}{AE}=\frac{CE}{FE}\)(tính chất của tỉ lệ thức)

Do đó \(\frac{AD}{AF}=\frac{CE}{FE}\Rightarrow\frac{AD^2}{AF^2}=\frac{CE^2}{FE^2}\left(3\right)\)

Từ (1) và (3)

\(\Rightarrow\frac{AD^2}{AE^2}+\frac{AD^2}{AF^2}=\frac{FC^2}{FE^2}+\frac{CE^2}{FE^2}\)

\(\Rightarrow AD^2\left(\frac{1}{AE^2}+\frac{1}{AF^2}\right)=\frac{FC^2+CE^2}{FE^2}\)

Vì ABCD là hình vuông (giả thiết)

\(\Rightarrow BC\perp CD\)(tính chất)\(\Rightarrow EC\perp DF\)

Do đó \(\Delta CEF\)vuông tại C.

\(\Rightarrow CE^2+CF^2=EF^2\)(định lí Py-ta-go)

Do đó: \(AD^2\left(\frac{1}{AE^2}+\frac{1}{AF^2}\right)=\frac{FE^2}{FE^2}=1\)

\(\Rightarrow\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{AD^2}\)(điều phải chứng minh).

20 tháng 3 2021

A B D C E F

10 tháng 9 2020

b1

10 tháng 9 2020

b2

19 tháng 8 2016

A B C D K E F

a/ Ta có : góc KAD = góc EAB vì cùng phụ với góc DAE ; AD = AB

=> tam giác DAK = tam giác ABE (cgv.gnk)

=> AK = AE => tam giác AKE là tam giác cân

b/ Áp dụng hệ thức về cạnh trong tam giác vuông :  \(\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{AK^2}+\frac{1}{AF^2}=\frac{1}{AD^2}\) không đổi

6 tháng 10 2019

1/AK2 hay 4/AK2 vậy cậu

21 tháng 8 2019

Goi giao diem cua tia AE va DN la G

a.Ta co:\(\widehat{G}=\widehat{AME}\)(cung phu \(\widehat{GEC}\))(1)

\(\widehat{G}+\widehat{ANG}=90^0\)

\(\widehat{AME}+\widehat{AEM}=90^0\)

\(\Rightarrow\widehat{ANG}=\widehat{AEM}\) (2)

Tu (1) va (2) suy ra:\(\Delta AGN=\Delta AME\left(g-g-g\right)\)

Suy ra:\(AN=AE\)(2 canh tuong ung)

b,Ta co:\(\frac{1}{AB^2}=\frac{1}{AM^2}+\frac{1}{AE^2}\)

\(\Rightarrow\frac{1}{AM^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\left(AE=AN\right)\)

I don't now

...............

.................

14 tháng 5 2019

từ A kẻ đường thắng vuông góc AF cắt BC tại K 

ta có góc BAK = góc DAF ( cùng phụ vs góc BAE)

Xét tam giác BKA và tam giác DFA có

       góc ADF= góc ABK ( =90 độ )

    AB=AD

   góc BAK = góc DAF

=> tam giác BKA và DFA là 2 tam giác = nhau 

=> AK=AF ( các cạnh tương ứng )

  tam giác AEK vuông tại A có đường cao AB 

=> \(\frac{1}{AB^2}=\frac{1}{AK^2}+\frac{1}{AE^2}\)( hệ thức lượng trong tam giác vuông )

=>\(\frac{1}{AB^2}=\frac{1}{AF^2}+\frac{1}{AE^2}\)( đpcm)