Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ABCD là hình vuông (giả thiết).
\(\Rightarrow AB=BC=CD=DA\)(tính chất)
Và \(AB//CD\)(tính chất) \(\Rightarrow AB//DF\).
Và \(AD//CE\)(tính chất) \(\Rightarrow CE//AD\)
\(AB//DF\)(chứng minh trên)
\(\frac{AB}{AE}=\frac{FC}{FE}\)(hệ quả của định lí Ta-lét)
\(\Rightarrow\frac{AD}{AE}=\frac{FC}{FE}\)(vì \(AB=AD\))
\(\Rightarrow\frac{AD^2}{AE^2}=\frac{FC^2}{FE^2}\left(1\right)\)
Vì \(AB//CF\)(giả thiết)
\(\Rightarrow\frac{BE}{CE}=\frac{AE}{FE}\)(hệ quả của định lí Ta-lét) (2)
\(\Rightarrow\frac{BE}{CE+BE}=\frac{AE}{FE+AE}\)(tính chất của tỉ lệ thức)
\(\Rightarrow\frac{BE}{BC}=\frac{AE}{AF}\)\(\Rightarrow\frac{BE}{AD}=\frac{AE}{AF}\)(vì \(AD=BC\))
\(\Rightarrow\frac{AD}{AF}=\frac{BE}{AE}\)(tính chất của tỉ lệ thức)
Từ (2) \(\Rightarrow\frac{BE}{AE}=\frac{CE}{FE}\)(tính chất của tỉ lệ thức)
Do đó \(\frac{AD}{AF}=\frac{CE}{FE}\Rightarrow\frac{AD^2}{AF^2}=\frac{CE^2}{FE^2}\left(3\right)\)
Từ (1) và (3)
\(\Rightarrow\frac{AD^2}{AE^2}+\frac{AD^2}{AF^2}=\frac{FC^2}{FE^2}+\frac{CE^2}{FE^2}\)
\(\Rightarrow AD^2\left(\frac{1}{AE^2}+\frac{1}{AF^2}\right)=\frac{FC^2+CE^2}{FE^2}\)
Vì ABCD là hình vuông (giả thiết)
\(\Rightarrow BC\perp CD\)(tính chất)\(\Rightarrow EC\perp DF\)
Do đó \(\Delta CEF\)vuông tại C.
\(\Rightarrow CE^2+CF^2=EF^2\)(định lí Py-ta-go)
Do đó: \(AD^2\left(\frac{1}{AE^2}+\frac{1}{AF^2}\right)=\frac{FE^2}{FE^2}=1\)
\(\Rightarrow\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{AD^2}\)(điều phải chứng minh).
a/ Ta có : góc KAD = góc EAB vì cùng phụ với góc DAE ; AD = AB
=> tam giác DAK = tam giác ABE (cgv.gnk)
=> AK = AE => tam giác AKE là tam giác cân
b/ Áp dụng hệ thức về cạnh trong tam giác vuông : \(\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{AK^2}+\frac{1}{AF^2}=\frac{1}{AD^2}\) không đổi
Goi giao diem cua tia AE va DN la G
a.Ta co:\(\widehat{G}=\widehat{AME}\)(cung phu \(\widehat{GEC}\))(1)
\(\widehat{G}+\widehat{ANG}=90^0\)
\(\widehat{AME}+\widehat{AEM}=90^0\)
\(\Rightarrow\widehat{ANG}=\widehat{AEM}\) (2)
Tu (1) va (2) suy ra:\(\Delta AGN=\Delta AME\left(g-g-g\right)\)
Suy ra:\(AN=AE\)(2 canh tuong ung)
b,Ta co:\(\frac{1}{AB^2}=\frac{1}{AM^2}+\frac{1}{AE^2}\)
\(\Rightarrow\frac{1}{AM^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\left(AE=AN\right)\)
I don't now
...............
.................
từ A kẻ đường thắng vuông góc AF cắt BC tại K
ta có góc BAK = góc DAF ( cùng phụ vs góc BAE)
Xét tam giác BKA và tam giác DFA có
góc ADF= góc ABK ( =90 độ )
AB=AD
góc BAK = góc DAF
=> tam giác BKA và DFA là 2 tam giác = nhau
=> AK=AF ( các cạnh tương ứng )
tam giác AEK vuông tại A có đường cao AB
=> \(\frac{1}{AB^2}=\frac{1}{AK^2}+\frac{1}{AE^2}\)( hệ thức lượng trong tam giác vuông )
=>\(\frac{1}{AB^2}=\frac{1}{AF^2}+\frac{1}{AE^2}\)( đpcm)
câu a ) mình nhầm nha \(\Delta AGE\)mới đúng nha các bn
Ai làm đúng nhanh mik tích cho
hình vuông nha các bạn ko phải hình thang vuông