K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

MÌnh gợi ý cho bạn thôi. Mong bạn hiểu.

a, MN là đường trung bình của tam giác HDC nên MN song song với CD và MN =1/2 CD

Mà AB song song với CD và AB= 1/2 CD

Suy ra: MN song song với AB và MN =AB

Vậy ABMN là hình bình hành (DHNB)

b, MN song song với DC(cmt) và DC vuông góc với AD nên MN vuông góc với AD

Tam giác ADM có 2 đường cao DH, MN cắt nhau tại N.

Do đó: N là trực tâm của tam giác ADM

VÌ thế: AN vuông góc với DM

Mà AN song song với BM (vì ABMN là hình bình hành)

Vậy BM vuông góc với DM.

Chúc bạn học tốt.

9 tháng 8 2016

a) Ta có : M, N lần lượt là trung điểm của HC, HD => MN là đường trung bình của tam giác HDC => MN // CD và MN = 1/2 CD

MN = 1/2 CD => 2MN = CD, mà AB = CD (gt) => MN = AB (đpcm)

b) Hình trhang ABCD vuông tại A và D (gt) => AB // CD, mà MN // CD (cmt) nên AB // MN

Mà AB = MN (cmt) nên ABMN là hình bình hành (đpcm)

CHỌN giùm mình nha !!!!!!!!!!!!!!!!!!!!!

3 tháng 11 2018

không biết tự mà làm haaaaaaaaaaa!!!

17 tháng 9 2020

a) MN là đường trung bình tam giác HDC \(\Rightarrow\hept{\begin{cases}MN=\frac{1}{2}DC=AB\\MN//DC//AB\end{cases}}\)=> MNAB là hình bình hành

b) Có \(\hept{\begin{cases}MN//DC\\AD\perp DC\end{cases}\Rightarrow MN\perp AD}\)

Mà \(DN\perp AM\)nên N là trực tâm tam giác AMD \(\Rightarrow AN\perp DM\)

Mà \(BM//AN\)(vì ANMB là hình bình hành) nên \(BM\perp DM\Rightarrow\widehat{BMD}=90^0\)

c) \(S_{ABCD}=\frac{\left(AB+DC\right).AD}{2}=\frac{\left(\frac{DC}{2}+DC\right).AD}{2}=\frac{\left(8+16\right).6}{2}=72\left(cm^2\right)\)

16 tháng 9 2020

A B C D H N M

a, có M;N lần lượt là trđ của HC; HD (gt) xét tg DHC 

=> MN là đtb của tg DHC (đn)

=> MN // DC mà DC // AB (do ABCD là hình thang) => AB // MN

     MN = 1/2DC (tc) mà DC = 2AB => AB = 1/2DC => MN = AB

=> ABMN là hình bình hành (dấu hiệu)

b, MN // DC (câu a) DC _|_ AD (gt)

=> MN _|_ AD ; DN _|_ AM (gt) ; xét tg DAM 

=> N là trực tâm của tg DAM

=> AN _|_ DM mà AN // BM do ABMN là hình bình hành (câu a)

=> DM _|_ BM (TC)

=> ^BMD = 90

c, có CD thì tính đc AB xong tính bth

a: Xét ΔHDC có 

N là trung điểm của HD

M là trung điểm của HC

Do đó: NM là đường trung bình của ΔHDC

Suy ra: NM//DC và \(NM=\dfrac{CD}{2}\)

mà AB//DC và \(AB=\dfrac{CD}{2}\)

nên NM//AB và NM=AB

b: Xét tứ giác ABMN có 

AB//NM

AB=NM

Do đó: ABMN là hình bình hành