K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

Cho hình vuông ABCD có diện tích là 98cm^2. Trên cạnh AD lấy điểm M. Đường thẳng qua M vuông góc với AC và cắt đường thẳng BC tại N. Tính độ dài MN.

17 tháng 2 2019

a,\(\Delta ABM\infty\Delta NDA\left(g.g\right)\Rightarrow\frac{AB}{ND}=\frac{BM}{DA}\Rightarrow AB^2=BM.DN\) (vì AB = AD)

b, Ta có: \(\frac{NM}{NA}=\frac{MC}{AD}\Rightarrow\frac{AD}{AN}=\frac{MC}{MN}\)

\(\frac{CN}{AB}=\frac{MN}{AM}\Rightarrow\frac{CN}{AD}=\frac{MN}{AM}\Rightarrow\frac{AD}{AM}=\frac{CN}{MN}\)

Vậy \(\left(\frac{AD}{AM}\right)^2+\left(\frac{AD}{AN}\right)^2=\left(\frac{CN}{MN}\right)^2+\left(\frac{MC}{MN}\right)^2=\frac{MC^2+CN^2}{MN^2}=1\)

\(\Rightarrow\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)

22 tháng 6 2018

- Tốt lắm bạn hiền :v

3 tháng 7 2015

a) từ I kẻ HI//AB//DC

=> GÓC HID= GÓC IDC ( SLT)

MÀ IDC=IDH => GÓC HID=GÓC IDH => TAM GIÁC HID CÂN TẠI H => HD=HI

TƯƠNG TỰ CHỨNG MINH TAM GIÁC HIA CÂN TẠI H => HI=HA

=> HA=HD => H LÀ TRUNG ĐIỂM AD

MÀ HI//AC//CD => I PHẢI LÀ TRUNG ĐIỂM BC

=> HI LÀ ĐTB CỦA HÌNH THANG

=> HI= (AB+CD)/2 (1)

MẶT KHÁC TRONG TAM GIÁC IAD: 

GÓC ADI + GÓC IDA=1/2 GÓC A +1/2 GÓC D=1/2 (A+D)=1/2 180=90 ( ABCD LÀ HÌNH THANG => A+D=180)

=> TAM GIÁC ADI VUÔNG TẠI I. HI LÀ TRUNG TUYẾN => HI=AD/2 (2)

TỪ (1;2) => ĐPCM

B) GỌI PG GÓC A CẮT PG GÓC D TẠI I

TỪ I TA KẺ HI//AB//CD (H THUỘC AD) 

=> .... ( ĐẾN ĐÂY C/M NHƯ TRÊN ĐỂ => H LÀ TĐ CỦA AD, TAM GIÁC ADI VUÔNG)

=> HI= AD/2.

TA CÓ: AD=AB+CD => HI=AB+CD/2 HAY HI= NỬA TỔNG 2 ĐÁY

H LÀ TRUNG ĐIỂM AD, HI//AB//CD. HI = NỬA TỔNG HAI ĐÁY => I PHẢI LÀ TRUNG ĐIỂM BC => AI CẮT DI TẠI I THUỘC BC