K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2017

a) Đáy lớn hình thang là:

      8 + 6 = 14 cm

b) Chiều cao AH là:

     ( 6 + 8 ) : 2 = 7 cm

  Diện tích hình thang ABCD là:

     8 x 6 = 48 cm2

c)  bạn tự làm nha!        

27 tháng 6 2021

\(ABssCD\Rightarrow\dfrac{AB}{CD}=\dfrac{OB}{OD}=\dfrac{OA}{OC}=\dfrac{2}{3}\)

a)\(S_{AOD}=\dfrac{1}{2}OA.OD.sinAOB\)

\(S_{BOC}=\dfrac{1}{2}OB.OC.sinBOC\)

\(\Rightarrow\dfrac{S_{AOD}}{S_{BOC}}=\dfrac{OA.OD}{OB.OC}\) vì \(\widehat{AOD}=\widehat{BOC}\Rightarrow sinAOD=sinBOC\)

\(\Leftrightarrow\dfrac{S_{AOD}}{S_{BOC}}=\dfrac{2}{3}.\dfrac{3}{2}=1\)

b) vì \(ABssCD\Rightarrow\dfrac{OH}{OK}=\dfrac{2}{3}\Rightarrow\dfrac{OH}{HK}=\dfrac{2}{5}\)

\(S_{AOB}=\dfrac{1}{2}.OH.AB\\ S_{ABCD}=\dfrac{1}{2}\left(AB+CD\right).HK=\dfrac{1}{2}\left(AB+\dfrac{3}{2}AB\right).HK=\dfrac{1}{2}.\dfrac{5}{2}AB.HK\)

\(\Rightarrow\dfrac{S_{AOB}}{S_{ABCD}}=\dfrac{\dfrac{1}{2}OH.AB}{\dfrac{1}{2}HK.\dfrac{5}{2}AB}=\dfrac{2}{5}.\dfrac{1}{\dfrac{5}{2}}=\dfrac{4}{25}\)

\(\Rightarrow S_{ABCD}=\dfrac{4}{\dfrac{4}{25}}=25\)

27 tháng 6 2021

undefined

8 tháng 8 2016

Ta kí hiệu S (MNP) là diện tích tam giác MNP

a) Diện tích hình thang ABCD = 1/2 (AB+CD)
= 1/2 (50 + 20) . 14 = 245 (cm2)
b,S(AED)=S(ACD) - S(ECD)
   S(BEC) = S(BCD) − S(ECD)
  mà S(ACD) = S(BCD) nên S(AED) = S(BEC).
c, BE/DE = S(AEB) / S(AED) = S(CEB) / S(CED) = S(AEB) + S(CEB) / S(AED) + S(CED) = S(ABC) / S(ACD) = AB / CD = 3/4
=> S(CEB) / S(CED) = 3/4 =>S(CEB) + S(CED) / S(CED) = 7/4 => S(DBC) / S(CED) = 7/4 => S(CED) = 4/7 . S(DBC)
Ta có S(DBC) = 140 cm² nên S(CED) = 80 cm².
18 tháng 9 2016

<br class="Apple-interchange-newline"><div id="inner-editor"></div>S1,S2,S3,S4lần lượt là diện tích các tam giác AGD,AGB,BGC,CGD

ta có : S1S2 =DGBG =S4S3 S1.S3=S2.S4(1)

ta thấy tam giác ABD và tam giác ABC có diện tích bằng nhau vì có chung đáy và đường cao không thay đổi.

Mà SABD=S1+S2;SABC=S3+S2S1=S3(2)

Từ (1)và (2)S2.S4=S21S2=S124 

SABCD=S1+S2+S3+S4=2S1+S12S4 =2.18+18225 +25=184925 =73,96(cm2)

24 tháng 6 2019

A B D C h o

Chiều dài đáy lớn  là

3.8 =24(cm)

Đường cao hình thang là 

\(\frac{8}{100}.25=2\left(cm\right)\)

=> Diện tích hình thang là 

SAHD = \(\frac{\left(AB+DC\right).h}{2}\) => \(\frac{\left(8+24\right).2}{2}=32\left(cm2\right)\)

(giải thích thì mik chị ko biết)

b) Ta có cặp tam giác ADC song song với cặp BDC và S bằng nhau vì cùng đáy + chiều cao 

=> tương tự SABD = SABC  vì chiều cao đáy = nhau 

\(=>AOB=DOC\left(dd\right)\)

\(=>ABD=ABD\)

Tương tự nhé

~Hok tốt`

24 tháng 6 2019

#) Giải

a. Ta có cặp tam giác BIC và AID vì từ điểm A và B kéo xuống trung tâm I thì hai đoạn đó bằng nhau và BC = AD => Hai tam giác đó bằng nhau.

Tương tự như thế, AC và DB bằng nhau cắt tại trung tâm I và AI = AB => Hai tam giác ABC và ABD có diện tích bằng nhau.

Ta có 2 cặp tam giác bằng nhau là tam giác BIC, AID và cặp khác gồm hai tam giác ABC và ABD.

b. 

\(BI=\frac{1}{3}ID\) => S BIC = \(\frac{1}{3}\)S CID do hai tam giác có chung cao hạ từ C xuống BD và đáy BI = 1/3 ID

Tương tự chứng minh với hai tam giác BIC với AIB thôi 

C/M ngược : S BCD = 1/3 S ABD  vì hai tam giác có chung chiều cao là chiều cao của hình thang

Và đáy BC = 1/3 AD

Mặt khác hai tam giác có chung đáy BD nên cao IC = 1/3 cao AI

Từ đó ta có : \(S_{AIB}=3S_{BIC}\)

Vì hai tam giác có chung cao hạ từ B xuống AC

- Cao IC = 1/3 cao AI

\(\Rightarrow S_{AIB}=\frac{2}{3}S_{ABC}=\frac{1}{4}\cdot\frac{2}{3}\left(S_{ABCD}\right)=\frac{2}{12}S_{ABCD}\)

\(\frac{2}{12}S_{ABCD}=48\cdot\frac{2}{12}=8\left(cm^2\right)\)

           Đ/s: ....

~ Hok tốt ~