K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2015

cho hinh vg mak con kem theo may cai du lieu lm chag pit ve hinh j ca

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HDa , Chứng minh rằng ABMN là hình bình hành .b , Chứng minh rằng N là trực tâm của tam giác AMDc , Chứng minh rằng góc BMD = 90 độd , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường...
Đọc tiếp

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD

a , Chứng minh rằng ABMN là hình bình hành .

b , Chứng minh rằng N là trực tâm của tam giác AMD

c , Chứng minh rằng góc BMD = 90 độ

d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .

2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.

3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN

a , Chứng minh rằng tam giác ADM = tam giác DBN

b , Chứng minh rằng góc MBN = 60 độ

c , Chứng minh rằng tam giác BNM đều .

4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N

a , Chứng minh rằng tam giác MAN vuông cân

b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .

5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .

a , Chứng minh rằng MENF là hình thang

b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .

0
31 tháng 7 2017

hình tự vẽ

a) cm \(\Delta ABH~\Delta CAH\left(g.g\right)\)

\(\Rightarrow\frac{AB}{AC}=\frac{AH}{CH}\)(tỉ số đồng dạng)

\(\Leftrightarrow\left(\frac{AB}{AC}\right)^2=\frac{AH^2}{CH^2}\Leftrightarrow\frac{AB^2}{AC^2}=\frac{BH.CH}{CH^2}=\frac{BH}{CH}\)(đpcm)

30 tháng 7 2017

a) Tính độ dài đoạn thẳng DE: 
DAE^ = ADH^ = AEH^ = 1v => ADHE là hình chữ nhật 
=> DE = AH 
mà AH^2 = HB.HC = 9.4 => AH = 3.2 = 6 
vậy DE = 6 

b) Các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M và N ,CM:M là trung điểm của BH,N là trung điểm của CH. 
CEN^ = DEH^ ( góc có cạnh tương ứng vuông góc) 
ECN^ = DAH^ ( ------------nt--------------) 
DAH^ = DEH^ ( cùng chắn cung DH của đường tròn ngoại tiếp tứgiác ADHE) 
=> CEN^ = ECN^ => NE = NC (1) 
HEN^ = AED^ ( góc có cạnh tương ứng vuông góc) 
EHN^ = AHD^ ( -----nt-----) 
AED^ = AHD^ ( cùng chắn cung AD của đường tròn ngoại tiếp tứ giác ADHE) 
=> HEN^ = EHN^ => NE = NH (2) 
(1) và (2) => NC = NH hay M là trung điểm của CH. 
chứng minh tương tự M là trung điểm của BH. 

c) Tính diện tích tứ giác DENM 
DENM là hình thang vuông, có: 
DM = BH/2 = 4/2 = 2 
EN = CH/2 = 9/2 
S(DENM) = (DM + EN).DE/2 = (2 + 9/2).6/2 = 39/2 đvdt

toán chứng minh là nghề của mk