Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADHB có
\(\widehat{DAB}=\widehat{ADH}=\widehat{BHD}=90^0\)
Do đó: ADHB là hình chữ nhật
mà AB=AD
nên ADHB là hình vuông
1/xét tam giác DEC có HK là đường trung bình
=>HK//DC
HK=1/2DC
Mà AB=1/2DC
AB//DC
=>HK=AB
HK//AB
=>ABKH là hình bình hành
2/ Do HK//AB(cmt)
Mà AB vuông góc với AD
=>HK vuông góc với AD
=>H là trực tâm của tam giá ADK
=>AH vuông góc với DK
Mà AH//KB (do ABKH là hình bình hành)
=>BK vuông góc với DK
=>Góc BKD =90 độ
ghét hè. mi cứ đi hỏi lung tung nik. trách chi bựa đến giừ bài tập làm đc
kéo dài DA và CB cắt nhau tại K
AB là đường trung bình ( AB//DC và 2AB = DC)
=> B là trung điểm KC
=> DB là trung tuyến ΔKDC vuông tại D
=> DB = BC = DC
=> tam giác DBC đều
Vậy góc KCD= 60độ
tổng 4 góc trong tứ giác ABCD = 360độ
=> góc ABC = 120độ
cách 2
Kẻ BH⊥CD suy ra tứ giác ABHD là hình chữ nhật
nên ^ABH=90* (1)
Xét ∆BHC vuông tại H có HC=1/2 BC nên ^HBC=30* (2)
Từ (1) và (2) suy ra ^ABC=^ABH+^HBC=90*+30*=120*
a: Xét tứ giác ABHD có
\(\widehat{BAD}=\widehat{ADH}=\widehat{BHD}=90^0\)
=>ABHD là hình chữ nhật
Hình chữ nhật ABHD có AB=AD
nên ABHD là hình vuông
=>AB=BH=HD=DA
mà \(AB=AD=\dfrac{DC}{2}\)
nên \(BH=DH=\dfrac{DC}{2}\)
DH=DC/2
=>H là trung điểm của DC
Xét ΔDBC có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔDBC cân tại B(2)
Xét ΔBDC có
BH là đường trung tuyến
\(BH=\dfrac{DC}{2}\)
Do đó: ΔBDC vuông tại B(1)
Từ (1) và (2) suy ra ΔBDC vuông cân tại B
b: AB=HD
HD=HC
Do đó: AB=HC
Xét tứ giác ABCH có
AB//CH
AB=CH
Do đó: ABCH là hình bình hành
=>AC cắt BH tại trung điểm của mỗi đường
mà M là trung điểm của BH
nên M là trung điểm của AC
c: \(\widehat{ADI}+\widehat{IAD}=90^0\)(ΔADI vuông tại I)
\(\widehat{ACD}+\widehat{IAD}=90^0\)(ΔADC vuông tại D)
Do đó: \(\widehat{ADI}=\widehat{ACD}\)
mà \(\widehat{ACD}=\widehat{BAC}\)(hai góc so le trong, AB//CD)
nên \(\widehat{BAC}=\widehat{ADI}\)
Xem nhé
bạn ơi có phải tính chất dg trung tuyến = 1/2 cạnh huyền thì là tam giác vuông không ạ