Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
A B C D O
Xét tam giác ABC và BAD có :
AB : chung
\(\widehat{BAD}=\widehat{ABC}\)
AD = BC
( ABCD là hình thang cân )
\(\Rightarrow\Delta ABC=\Delta BAD\)
\(\Rightarrow\widehat{BAC}=\widehat{ABD}\)
\(\Delta AOB\)CÓ : \(\widehat{OAB}=\widehat{OBA}\Rightarrow\Delta AOB\)cân tại O nên OA = OB
Bài 2:
a: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{CFE}=60^0\\\widehat{AEB}=\widehat{CEF}=60^0\end{matrix}\right.\)
=>ΔCFE đều
b: Xét tứ giác ABCD có
\(\widehat{BAC}=\widehat{BDC}=90^0\)
Do đó: ABCD là tứ giác nội tiếp
a)
Lấy K làm trung điểm của BC
=> MK là đường trung bình của hình thang ABCD
\(\Rightarrow MK=\frac{AB+CD}{2}\)(*)
Tam giác MBC vuông tại M, MK là trung tuyến
\(\Rightarrow MK=\frac{BC}{2}\)(**)
Từ (*) và (**) => AB + CD = BC
b)
Ta có:
\(\widehat{HMC}=\widehat{MBC}=\widehat{KBM}\)
\(\widehat{KMB}=\widehat{KBM}\)
\(\widehat{KMB}=\widehat{DMC}\)
\(\Rightarrow\widehat{HMC}=\widehat{DCM}\)
Ta có:
\(\widehat{HMC}=\widehat{DCM}\)
\(\widehat{MDC}=\widehat{MHC}=90^o\Rightarrow\Delta HMC=\Delta DMC\left(ch-gn\right)\)
\(MC\)chung \(\Rightarrow MH=MD;CH=CD\)
=> MC là đường trung trực của DH => \(MC\perp DH\)và \(MB\perp MC\)
\(\Rightarrow DH//MB\Rightarrow MBHD\)là hình thang
A B E D C M H