Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔOIC và ΔABC có:
\(\widehat{ACB}\) : góc chung
\(\widehat{OIC}=\widehat{ABC}\) (đồng vị do JI//AB(gt))
=> ΔOIC~ΔABC(g.g)
=>\(\frac{OI}{AB}=\frac{CI}{BC}\)
=> BC.OI=AB.CI
b) Theo định lý đảo của định lý ta-let vào ΔBDC :
=> \(\frac{OI}{DC}=\frac{BI}{BC}\)
b)hình thang ABCD cóAB//CD=> góc ABO=góc ODC và góc BAO= góc OCD
=>tam giác ABO đồng dạng với tam giác CDO
=>DO/BO=CO/AO=>DO/BO+DO=CO/CO+OA=>DO/DB=CO/CA
a: Ta có: \(\widehat{OAB}=\widehat{ODC}\)
\(\widehat{OBA}=\widehat{OCD}\)
mà \(\widehat{ODC}=\widehat{OCD}\)
nên \(\widehat{OAB}=\widehat{OBA}\)
hay ΔOAB cân tại O
a: Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)
Do đó: ΔOAB\(\sim\)ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)
=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)
=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)
=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)
=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)
=>\(\dfrac{OA}{AC}=\dfrac{OB}{BD}\)(2)
b: Xét ΔCAD có OE//AD
nên \(\dfrac{DE}{DC}=\dfrac{AO}{AC}\)(1)
Xét ΔBDC có OF//BC
nên \(\dfrac{CF}{CD}=\dfrac{BO}{BD}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{DE}{DC}=\dfrac{CF}{CD}\)
=>DE=CF
"Hai đường chéo cắt nhau tại O và song song với đáy AB....". Câu này không đúng lắm. Bạn xem lại đề.
Xét ΔDAB có OI//AB
nên \(\dfrac{OI}{AB}=\dfrac{DO}{DB}\)
Xét ΔBDC có OK//DC
nên \(\dfrac{OK}{CD}=\dfrac{BO}{BD}\)
=>\(\dfrac{OI}{AB}+\dfrac{OK}{CD}=\dfrac{BO}{BD}+\dfrac{DO}{DB}=1\)
Xét ΔADC có OI//DC
nên \(\dfrac{OI}{DC}=\dfrac{AI}{AD}\)
Xét ΔBDC có OK//DC
nên \(\dfrac{OK}{DC}=\dfrac{BK}{BC}\)
Xét hình thang ABCD có IK//AB//CD
nên \(\dfrac{AI}{AD}=\dfrac{BK}{BC}\)
=>\(\dfrac{OI}{DC}=\dfrac{OK}{DC}\)
=>OI=OK
=>\(\dfrac{OI}{AB}+\dfrac{OK}{CD}=\dfrac{OI}{AB}+\dfrac{OI}{CD}=1\)
-Sửa đề: \(\widehat{A}=\widehat{D}=90^0\)
a) -△OAB và △OCD có: \(\widehat{OAB}=\widehat{OCD};\widehat{AOB}=\widehat{COD}\)
\(\Rightarrow\)△OAB∼△OCD (g-g).
b) \(AC^2-BD^2=DC^2-AB^2\)
\(\Leftrightarrow AC^2-DC^2=BD^2-AB^2\)
\(\Leftrightarrow AD^2=AD^2\) (luôn đúng).
c) -△BCD có: OI//DC \(\Rightarrow\dfrac{DC}{OI}=\dfrac{BD}{BO}\Rightarrow\dfrac{DC}{OI}-1=\dfrac{OD}{BO}\)
-△AOB có: AB//DC \(\Rightarrow\dfrac{OD}{BO}=\dfrac{DC}{AB}=\dfrac{DC}{OI}-1\)
\(\Rightarrow\dfrac{DC}{AB}+1=\dfrac{DC}{OI}\Rightarrow\dfrac{DC+AB}{AB}=\dfrac{DC}{OI}\Rightarrow\dfrac{1}{OI}=\dfrac{DC+AB}{DC.AB}=\dfrac{1}{AB}+\dfrac{1}{DC}\)