K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

Câu hỏi của Nguyễn Thiên Anh - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài tương tự tại đây nhé.

Xét ΔIAB và ΔICD có

góc IAB=góc ICD
goc AIB=góc CID

=>ΔIAB đồng dạng với ΔICD

=>IB/ID=AB/CD=BM/MC

=>IM//DC

=>IM vuông góc AD

25 tháng 6 2017

            ABCD1520HI

a) 

\(\Delta ABC\)vuông tại A

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=20\left(cm\right)\)

BD là đường phân giác của \(\Delta ABC\)

\(\Rightarrow\frac{AD}{AB}=\frac{CD}{BC}=\frac{AD+CD}{AB+BC}=\frac{AC}{AB+BC}=\frac{20}{15+25}=\frac{1}{2}\)

\(\Leftrightarrow\frac{AD}{AB}=\frac{1}{2}\Rightarrow AD=\frac{AB}{2}=\frac{15}{2}=7,5\left(cm\right)\)

b)

Xét \(\Delta ABC\)và \(\Delta HBA\)CÓ:

\(\widehat{BAC}=\widehat{AHB}\left(=90^ô\right)\)

\(\widehat{ABC}\)là góc chung (gt)

Suy ra \(\Delta ABC\)đồng dạng với \(\Delta HBA\)(g.g)

\(\Rightarrow\frac{AB}{HB}=\frac{BC}{BA}=\frac{AC}{AH}\Rightarrow\hept{\begin{cases}AH=\frac{AB.AC}{BC}\\HB=\frac{AB^2}{BC}\end{cases}\Leftrightarrow\hept{\begin{cases}AH=\frac{15.20}{25}=12\left(cm\right)\\HB=\frac{15^2}{25}=9\left(cm\right)\end{cases}}}\)

c)

Xét \(\Delta ABD\)và \(\Delta HBI\)có;

\(\widehat{BAD}=\widehat{BHI}=90^o\)

\(\widehat{ABD}=\widehat{HBI}\left(gt\right)\)

SUY RA \(\Delta ABD\)đồng dạng với \(\Delta HBI\)(g.g)

\(\Rightarrow\frac{AB}{HB}=\frac{BD}{BI}\Leftrightarrow AB.BI=BD=HB\)

d)

\(\Delta ABD\)đồng dạng với \(\Delta HBI\) ( Theo câu c)

\(\frac{AD}{HI}=\frac{AB}{HB}\Rightarrow HI=\frac{AD.HB}{AB}=\frac{7,5.9}{15}=4,5\left(cm\right)\)

Ta có:

\(AI=AH-HI=12-4,5=7,5\left(cm\right)\)

Mà AD=7,5 cm

nên \(\Delta ADI\)cân tại A

e)

\(\Delta ABD\)đồng dạng vớI \(\Delta HBI\)( Theo câu c)

\(\Rightarrow\frac{AD}{IH}=\frac{BD}{BI}\Leftrightarrow AI.BI=BD.IH\)

a: Xét ΔBAD vuông tại A và ΔADC vuông tại D có

BA/AD=AD/DC

=>ΔBAD đồng dạng với ΔADC

b: ΔBAD đồng dạng với ΔADC

=>góc BDA=góc ACD

Xét ΔOAD và ΔDAC có

góc ODA=góc DCA

góc A chung

=>ΔOAD đồng dạng với ΔDAC

=>góc AOD=góc ADC=90 độ

=>AC vuông góc BD tại O

c: Xét ΔOAB và ΔOCD có

góc OAB=góc OCD

góc AOB=góc COD

=>ΔOAB đồng dạng với ΔOCD

=>S OAB/S OCD=(AB/CD)^2=(4/9)^2=16/81