Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ ba đường cao của ΔYMN , ΔXPQ và tứ giác MNPQ
=> Ba đường cao này bằng nhau vì cùng vuông góc với hai đường thẳng MN , PQ song song với nhau
Gọi h là độ dài ba đường cao
Ta có :
\(S_{YMN}=\dfrac{PQ.h}{2}\)
\(S_{XPQ}=\dfrac{MN.h}{2}\)
\(\Rightarrow S_{YMN}+S_{XPQ}=\dfrac{PQ.h}{2}+\dfrac{MN.h}{2}=\dfrac{PQ.h+MN.h}{2}=\dfrac{\left(PQ+MN\right).h}{2}=S_{MNPQ}\left(đpcm\right)\)
Bài 1: a) Đặt x2+x+3 = t (t>0) , ta có: t(t+1)-12=0
<=> (t-3)(t+4)=0
<=> t=3 (vì t>0)
=> x2+x+3=3 <=> x2+x=0 <=> x=0,x=-1
a: Xét hình thang MNPQ có
I là trung điểm của MQ
IK//MN//QP
Do đó: K là trung điểm của NP
b: Xét hình thang MNPQ có
I là trung điểm của MQ
K là trung điểm của NP
Do đó: IK là đường trung bình của hình thang MNPQ
Suy ra: \(IK=\dfrac{MN+PQ}{2}=6.5\left(cm\right)\)