Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. xét tam giác NIP vuônh tại I suy ra IP=căn của(15^2-12^2)=9
b. xét tam giác QNP có NI vuông góc với QP
mà 12^2=16*9 suy ra NI^2=QI*IP suy ra tam giác QNP vuông tại N suy ra QN vuông góc với NP
( dùng đảo của hệ thức lượng) bạn có thể dùng đảo pitago bằng cách tính NQ
c.từ M hạ đường cao MF
tính tương tự câu a ta được QF=9
suy ra FI=16-9=7
MN // FI ( MNPQ là hình thang cân) và MF//NI( cùng vuông góc với QP) suy ra MNIF là hình bình hành
suy ra MN=FI=7
suy ra Smnpq=(MN+PQ)*NP/2=240
d. theo chứng minh câu b suy ra tam giác NPQ vuông tại N mà E là trung điểm của QP suy ra EQ=EN suy ra tam giác EQN cân tại E suy ra góc NQE = góc ENQ
mà ENQ= góc PNK ( cùng phụ góc ENP) suy ra góc NQE= góc ENQ
xét tam giác QNK và tam giác NPK có
góc NKP chung
gcs NQE= góc ENQ
suy ra 2 tam giác đồng dạng
suy ra KN/KP=KQ/KN
suy ra KN^2=KP.KQ
k cho minh nnha
Gọi O là giao của AC và BD
Xét ΔODE vuông tại D và ΔOCE vuông tại C có
OE chung
ED=EC
Do đó: ΔODE=ΔOCE
=>OD=OC
Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc OBA=góc ODC
=>ΔOAB đồng dạng với ΔOCD
=>OA/OC=OB/OD
mà OC=OD
nên OA=OB
AC=AO+OC
BD=BO+OD
mà AO=BO và CO=DO
nên AC=BD
Xét tứ giác ABCD có
AB//CD
AC=BD
Do đó: ABCD là hình thang cân
a: Xét tứ giác MNKP có
MN//KP
MP//NK
=>MNKP là hình bình hành
=>MP=NK
mà MP=NQ
nên NK=NQ
=>ΔNKQ cân tại N
b: MNKP là hbh
=>góc K=góc NMP
=>góc K=góc MPQ
=>góc MPQ=góc NQP
Xét ΔMQP và ΔNPQ có
MP=NQ
góc MPQ=góc NQP
QP chung
=>ΔMQP=ΔNPQ
c: ΔMQP=ΔNPQ
=>góc MQP=góc NPQ
=>MNPQ là hình thang cân
a: Hình thang MNPQ có MP=NQ
nên MNPQ là hình thang cân
b: Xét tứ giác MNKP có
MN//KP
MP//KN
Do đó: MNKP là hình bình hành
Suy ra: MP=NK
mà MP=NQ
nên NK=NQ
hay ΔNKQ cân tại N
a: Xét tứ giác MQAP có
MQ//AP
MP//AQ
Do đó: MQAP là hình bình hành
ta có MNPQ là hình thang=>MN//PQ
mà \(=\angle\left(NMP\right)=\angle\left(MNQ\right)=>\angle\left(NQP\right)=\angle\left(MPQ\right)\)
=>tam giác MNO cân tại O=>MO=NO
=>tam giác QOP cân tại O=>OQ=Op
=>MO+OP=NO+OQ=>NQ=MP
=>MNPQ là hình thang cân
\(=>\angle\left(M\right)=\angle\left(N\right)\left(1\right)\)
\(\angle\left(Q\right)=\angle\left(P\right)\left(2\right)\)
mà EF//PQ=>EF//MN
=>MNFE là hình thang(3)
từ (1)(3)=>MNFE là hình thang cân
=>EFPQ là hình thang(4)
(2)(4)=>EFPQ là hình thang cân
Ta có: \(\widehat{OMN}=\widehat{OPQ}\)
\(\widehat{ONM}=\widehat{OQP}\)
mà \(\widehat{OMN}=\widehat{ONM}\)
nên \(\widehat{OPQ}=\widehat{OQP}\)
Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)
nên ΔOMN cân tại O
Xét ΔOPQ có \(\widehat{OPQ}=\widehat{OQP}\)
nên ΔOPQ cân tại O
Ta có: OM+OP=MP
ON+OQ=QN
mà OM=ON
và OP=OQ
nên MP=QN
Hình thang MNPQ có MP=QN
nên MNPQ là hình thang cân
Suy ra: \(\widehat{EMN}=\widehat{FNM}\) và \(\widehat{EQP}=\widehat{FPQ}\)
Hình thang EMNF có \(\widehat{EMN}=\widehat{FNM}\)
nên EMNF là hình thang cân
Hình thang EQPF có \(\widehat{EQP}=\widehat{FPQ}\)
nên EQPF là hình thang cân