Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Xét tam giác $EDM$ và $EKQ$ có:
$\widehat{E}$ chung
$\widehat{EDM}=\widehat{EKQ}$ (hai góc đồng vị)
$\Rightarrow \triangle EDM\sim \triangle EKQ$ (g.g)
b)
$MD\parallel QK$ nên theo định lý Talet:
$\frac{EM}{EQ}=\frac{ED}{EK}\Rightarrow EM.EK=EQ.ED$
Ta có: \(\widehat{MQA}=\dfrac{\widehat{MQP}}{2}\)
\(\widehat{PNB}=\dfrac{\widehat{PNM}}{2}\)
mà \(\widehat{MQP}=\widehat{PNM}\)
nên \(\widehat{MQA}=\widehat{PNB}\)
Xét ΔMQA và ΔPNB có
\(\widehat{MQA}=\widehat{PNB}\)
MQ=PN
\(\widehat{QMA}=\widehat{NPB}\)
Do đó: ΔMQA=ΔPNB
Suy ra: AQ=PN và AM=PB
Ta có: AM+AN=MN
PB+BQ=PQ
mà AM=PB
và MN=PQ
nên AN=BQ
Xét tứ giác ANBQ có
AN//BQ
AN=BQ
Do đó:ANBQ là hình bình hành
a: Xét tứ giác MNKP có
MN//KP
MP//NK
=>MNKP là hình bình hành
=>MP=NK
mà MP=NQ
nên NK=NQ
=>ΔNKQ cân tại N
b: MNKP là hbh
=>góc K=góc NMP
=>góc K=góc MPQ
=>góc MPQ=góc NQP
Xét ΔMQP và ΔNPQ có
MP=NQ
góc MPQ=góc NQP
QP chung
=>ΔMQP=ΔNPQ
c: ΔMQP=ΔNPQ
=>góc MQP=góc NPQ
=>MNPQ là hình thang cân