K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2016

Cho hình thang MNPQ có góc P > 90 độ > góc Q và góc N = 2 lần góc M.

a) Xác định các đáy của hình thang MNPQ.

b) Nếu cho thêm MN = NP = MQ:2 = a. C/m MNPQ là hình thang cân. Gọi O là giao điểm của MP & NQ. Tính góc MOQ.

B) Kẻ MH vuông góc QP và NK vuông góc với QP ta có :

Ta có : MHK = NKH = 90 độ

=> MH // NK

=> Tứ giác MNKH là hình thang

Mà MHK = NKH = 90 độ

=> Tứ giác MNKH là hình thang cân

=> HMN = MNK = 90 độ

=> MNK = NKH = 90 độ

=> MN // HK 

=> MN// QP

=> MNPQ là hình thang

Mà QMN = MNP (gt)

=> MNPQ là hình thang cân(dpcm)

Ko bt tớ làm đúng ko nếu sai đừng chửi mk nhé

22 tháng 6 2019


A B C D M I 1 2 1 2 1 2

Gọi M là giao điểm DI và AB

Ta có: AM//DC 

=> \(\widehat{M}=\widehat{D_2}\)( sole trong) (1) 

Mà \(\widehat{D_1}=\widehat{D_2}\)( DI là phân giác góc D)

=> \(\widehat{M}=\widehat{D_1}\)

=> Tam giác ADM cân 

=> ID=IM (2) 

Ta lại có: \(\widehat{I_1}=\widehat{I_2}\)( so le trong) (3)

Từ (1) , (2) => Tam giác IBM = tam giác ICD

=> BM=DC

Do  vậy: AD=AM=AB+BM=AB+DC (AD=AM vì tam giác ADM cân)

4 tháng 12 2017

Ta có MN song song và bằng QP (vì cùng song song với AC và bằng 1/2 của AC theo tính chất đường trung bình của tam giác)

Vậy MNPQ là hình bình hành vì có 2 canh đối song song và bằng nhau. 

mk chi lam dc y a thui

4 tháng 12 2017

mơn nhìu nha

10 tháng 2 2016

a / hình bình hành 

b/ AC=BD ; AB>CD ; AB<AC<CD;AB<BD<CD

c/hình vuông

10 tháng 2 2016

(Hình thì bạn tự vẽ nha)
a) Xét tam giác BAD có: MB=MA ; QB=QD
=> MQ là đường trung bình của tam giác BAD
=> MQ // AD ; MQ = 1/2 AD (1)
Xét tam giác CAD có: NC = NA ; PC = PD
=> NP là đường trung bình của tam giác CAD
=> NP // AD ; NP = 1/2 AD  (2)
Từ (1), (2) => MQ // NP ; MQ = NP
Tứ giác MNPQ có: MQ // NP ; MQ = NP
=> MNPQ là hình bình hành
b) Theo a), ta có: MQ = 1/2 AD                                 (*)
Xét tam giác ABC có: MA = MB ; NA = NC
=>MN là đường trung bình của tam giác ABC
=> MN = 1/2 BC                                                        (**)
Từ (*), (**) và AD=BC (ABCD là thang cân)
=> MQ = MN
Hình bình hành MNPQ có MQ = MN 
=> MNPQ là hình thoi