K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:

Xét hình thang MNEF có 

A là trung điểm của MF

B là trung điểm của NE

Do đó: AB là đường trung bình của hình thang MNEF

Suy ra: AB//MN//FE

Xét ΔFMN có 

A là trung điểm của MF

AJ//MN

Do đó: J là trung điểm của NF

Xét ΔFMN có

A là trung điểm của MF

J là trung điểm của NF

Do đó: JA là đường trung bình của ΔFMN

Suy ra: \(AJ=\dfrac{MN}{2}\left(1\right)\)

Xét ΔEMN có 

B là trung điểm của NE

BI//MN

Do đó: I là trung điểm của ME

Xét ΔEMN có 

B là trung điểm của NE

I là trung điểm của ME

Do đó: BI là đường trung bình của ΔEMN

Suy ra: \(BI=\dfrac{MN}{2}\left(2\right)\)

Từ (1) và (2) suy ra AJ=BI

hay AI=BJ

20 tháng 4 2020

có m là trđ của cd rồi lại còn ef cắt bc tại m

a, xét tam giác DEM có AB // DM (gt) => ME/AE = DM/AB (ddl)

xét tam giác MFC có  MC // AB (gt) => MF/FB = CM/AB (đl)

có DM = CM do M là trung điểm của CD (gt)

=> ME/AE = MF/FB  xét tam giác ABM 

=> EF // AB (đl)

b, gọi EF cắt AD;BC lần lượt tại P và Q

xét tam giác ABD có PE // AB => PE/AB = DE/DB (đl)

xét tam giác DEM có DM // AB => DE/DB = ME/MA (đl)

xét tam giác ABM có EF // AB => EF/AB = ME/MA (đl)

=> PE/AB = EF/AB

=> PE = EF

tương tự cm được FQ = EF

=> PE = EF = FQ

c, Xét tam giác DAB có PE // AB  => PE/AB = DP/DA (đl)

xét tam giác ADM có PE // DM => PE/DM = AP/AD (đl) 

=> PE/AB + PE/DM = DP/AD + AP/AD

=> PE(1/AB + 1/DM) = 1                                  (1)

xét tam giác AMB có EF // AB => EF/AB = MF/MB (đl)

xét tam giác BDM có EF // DM => EF/DM = BF/BM (đl)

=> EF/AB + EF/DM = MF/MB + BF/BM

=> EF(1/AB + 1/DM) = 1                            (2)

xét tam giác ABC có FQ // AB => FQ/AB = CQ/BC (đl)

xét tam giác BMC có FQ // MC => FQ/MC = BQ/BC (đl)

=> FQ/AB + FQ/MC = CQ/BC + BQ/BC 

có MC = DM (câu a)

=> FQ(1/AB + 1/DM) = 1                            (3)

(1)(2)(3) => (1/AB + 1/DM)(PE + EF + FQ) = 3

=> PQ(1/AB + 1/DM) = 3

DM = 1/2 CD = 6

đến đây thay vào là ok

19 tháng 8 2016

A B C M E F

a/ Ta có : \(\begin{cases}ME\text{//}AC\\BM=MC\end{cases}\) => ME là đường trung bình của tam giác ABC

=> AE = EB

Tương tự MF cũng là đường trung bình của tam giác ABC

=> AF = FC

b) Vì \(\begin{cases}AE=EB\\AF=FC\end{cases}\) => EF là đường trung bình của tam giác ABC => EF=1/2BC

c) Ta có : ME = MF = 1/2AB = 1/2AC

AE = AF = 1/2AB = 1/2AC

19 tháng 8 2016

giúp mk với!!!khocroi

              b)   Gọi giao điểm của ME,DF và KI là O

Ta thấy:ME đi qua E, mà E là trung điểm của AB=> ME là đường trung tuyến xuất phát từ M 

            DF đi qua F, mà F là trung điểm của AC=> DF là đường trung tuyến xuất phát từ D       

           KI đi qua I, mà I là trung điểm của BC=> KI là đường trung tuyến xuất phát từ K

Mà ME,DF và KI cắt nhau tại O=>O là trọng tâm => ME,DF và KI đồng quy tại O

20 tháng 7 2017

                                                   Giải

          a) Có EF là đường trung bình của của tam giác ABC 

            =>EF=(1/2)BC=BF

                EF//BC

            =>BI//EI

            => EBFI là hình bình hành 

            Ta có :EF//BI =>EF//HI =>KFHI là hình thang

         mà góc