Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ D kẻ DA' vuông góc với AB
ABCD là hình thang cân nên AD = BC ; AB//DC
=> Khoảng cách từ điểm B đến DC bằng với khoảng cách từ điểm D đến AB
=> BE = DA'
Xét tam giác DA'A và tam giác BEC có :
BE = DA' (cmt ) ; DA'A = BEC ( = 90 độ ) ; AD = BC ( cmt )
=> Tam giác DA'A = Tam giác BEC ( ch-cgv )
=> S DA'A = S BEC
Mà S BEC + S ABED = S ABCD
S DA'A + S ABED = S A'BED
=> S ABCD = S A'BED
Dễ thấy A'BED là hình chữ nhật ( tự CM nhaa )
\(\Rightarrow S.A'BED=DE.BE\)
và \(S.ABCD=\frac{AB+DC}{2}.BE\)
\(\Rightarrow DE=\frac{AB+DC}{2}\) ( ĐPCM )
a: Xét ΔIBA và ΔIDC có
\(\widehat{IBA}=\widehat{IDC}\)
\(\widehat{AIB}=\widehat{CID}\)
Do đó: ΔIBA\(\sim\)ΔIDC
b: Ta có: ΔIBA\(\sim\)ΔIDC
nên IB/ID=IA/IC
hay \(IB\cdot IC=IA\cdot ID\)
Kéo dài AE cắt CD tại M, kéo dài BE cắt CD tại N
=> ^BAM=^AMD (góc so le trong), mà ^BAM = ^DAM (đề bài) => ^DAM = ^AMD => tg ADM cân tại D => AD=DM
Chứng minh tương tự ta cũng có tg BNC cân tại C => BC=CN
=> AD+BC = DM+CN=DN+MN+MN+CM=(DN+MN+CM)+MN=CD+MN
Mà CD=AD+BC (theo đề bài) => MN=0 hay M trùng N chính là giao của AE và BE => E trùng M trùng N => E thuộc CD
sai chỗ áp dụng địch lí pitago
phải hb = CĂN BẬC HAI BC BÌNH - HC BÌNH
a) Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
\(\widehat{BCH}\) chung
Do đó: ΔBDC\(\sim\)ΔHBC(g-g)
b) Ta có: ΔBDC\(\sim\)ΔHBC(cmt)
nên \(\dfrac{CD}{CB}=\dfrac{CB}{CH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(BC^2=HC\cdot DC\)(Đpcm)
a)Vì ABCD là hình thang =>BAD=ABC
AB//CD =>BAD +ADC=180°
Mà ADC=60°=>BAD =ABC=120°
b) vì ABCD là hình thang =>ADC=BCD=60°
Ta có AD =DE =1/2CD =>∆ADE cân tại D
Mà ADE =60° =>∆ADE đều
= > AED =60°=>AED =BCD=60°
=> AE//BC
Xét ABCD có AE//BC; AB//CE
=>ABCD là hbh