K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2017

a)

Xét \(\Delta\) vuông HNI và \(\Delta\)vuông GOJ, có:

góc IHN = góc JGO ( đ/nghĩa hình thang cân)

IH = JG (t/chất hình thang cân)

=> \(\Delta HNI=\Delta GOJ\) (ch+1gn)

=>HN = OG (2 cành tương ứng)

b) Xét \(\Delta HJI\)\(\Delta GIJ\) có:

HJ = GI (t/chất hình thang cân)

IH = JG (cmt)

JI là cạnh chung

=> \(\Delta HJI\) = \(\Delta GIJ\) (c.c.c)

=> góc IHJ = góc JGI (2 góc t.ứng)

\(\widehat{IHJ}=\widehat{JHI}\left(cmt\right)\)

\(\widehat{IHG}=\widehat{JGH}\left(cmt\right)\)

=>\(\widehat{IHG}-\widehat{IHJ}=\widehat{JGH}-\widehat{JGJ}\)

hay \(\widehat{JHG}=\widehat{IGH}\)

vì IJ//HG (gt)

=> \(\widehat{GIJ}=\widehat{IGJ}\left(slt\right)\)

=> \(\widehat{IJH}=\widehat{JHG}\)

\(\widehat{JHG}=\widehat{IGH}\)

\(\Rightarrow\widehat{GIJ}=\widehat{HJI}\)

hay \(\widehat{PIJ}=\widehat{PJI}\)

=> \(\Delta PIJ\) cân tại P

=> PI = PJ (đpcm)

vì HJ = GI (cmt)

PJ = PI (cmt)

=> HJ - PJ = GI - PI

hay PH = PG (đpcm)

13 tháng 10 2017

Hỏi đáp Toán

13 tháng 10 2017

Tứ giác

Câu 1: 

a: Xét ΔJOH vuông tại O và ΔING vuông tại N có

JH=IG

\(\widehat{JHO}=\widehat{IGN}\)

Do đó: ΔJOH=ΔING

SUy ra: HO=NG

=>HN=GO

b: Xét ΔIJH và ΔJIG có

JI chung

JH=IG

IH=JG

Do đó: ΔIJH=ΔJIG

Suy ra: \(\widehat{PIJ}=\widehat{PJI}\)

=>ΔPJI cân tại P

=>PI=PJ

Ta có PJ+PG=JG

PI+HP=IH

mà JG=IH

và PI=PJ

nên PG=PH

10 tháng 7 2019

cách 2, câu b/

Gọi giao của AC và BD là I, chứng minh được DI= CI

mà ED =CF 

=> IE= IF

mặt khác, tam giác IEF và tam giác IDC cùng cân tại I nên EF // CD

10 tháng 7 2019

cách 1, câu b/

Gọi N là giao EF và BC

dùng đường trung bình và tiên đề Euclid, chứng minh được E,F,N thẳng

>>> đpcm