K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
29 tháng 5 2022
Câu 1:
a: Xét ΔJOH vuông tại O và ΔING vuông tại N có
JH=IG
\(\widehat{JHO}=\widehat{IGN}\)
Do đó: ΔJOH=ΔING
SUy ra: HO=NG
=>HN=GO
b: Xét ΔIJH và ΔJIG có
JI chung
JH=IG
IH=JG
Do đó: ΔIJH=ΔJIG
Suy ra: \(\widehat{PIJ}=\widehat{PJI}\)
=>ΔPJI cân tại P
=>PI=PJ
Ta có PJ+PG=JG
PI+HP=IH
mà JG=IH
và PI=PJ
nên PG=PH
10 tháng 7 2019
cách 2, câu b/
Gọi giao của AC và BD là I, chứng minh được DI= CI
mà ED =CF
=> IE= IF
mặt khác, tam giác IEF và tam giác IDC cùng cân tại I nên EF // CD
10 tháng 7 2019
cách 1, câu b/
Gọi N là giao EF và BC
dùng đường trung bình và tiên đề Euclid, chứng minh được E,F,N thẳng
>>> đpcm
a)
Xét \(\Delta\) vuông HNI và \(\Delta\)vuông GOJ, có:
góc IHN = góc JGO ( đ/nghĩa hình thang cân)
IH = JG (t/chất hình thang cân)
=> \(\Delta HNI=\Delta GOJ\) (ch+1gn)
=>HN = OG (2 cành tương ứng)
b) Xét \(\Delta HJI\) và \(\Delta GIJ\) có:
HJ = GI (t/chất hình thang cân)
IH = JG (cmt)
JI là cạnh chung
=> \(\Delta HJI\) = \(\Delta GIJ\) (c.c.c)
=> góc IHJ = góc JGI (2 góc t.ứng)
vì \(\widehat{IHJ}=\widehat{JHI}\left(cmt\right)\)
\(\widehat{IHG}=\widehat{JGH}\left(cmt\right)\)
=>\(\widehat{IHG}-\widehat{IHJ}=\widehat{JGH}-\widehat{JGJ}\)
hay \(\widehat{JHG}=\widehat{IGH}\)
vì IJ//HG (gt)
=> \(\widehat{GIJ}=\widehat{IGJ}\left(slt\right)\)
=> \(\widehat{IJH}=\widehat{JHG}\)
mà \(\widehat{JHG}=\widehat{IGH}\)
\(\Rightarrow\widehat{GIJ}=\widehat{HJI}\)
hay \(\widehat{PIJ}=\widehat{PJI}\)
=> \(\Delta PIJ\) cân tại P
=> PI = PJ (đpcm)
vì HJ = GI (cmt)
PJ = PI (cmt)
=> HJ - PJ = GI - PI
hay PH = PG (đpcm)