Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)
Có: \(\left\{{}\begin{matrix}AB=AD\left(gt\right)\\AD=BC\left(2.cạnh.bên.hình.thang.cân\right)\end{matrix}\right.\)
\(\Rightarrow AB=BC\Rightarrow\Delta ABC.cân.tại.B\)
Mà AB // ED (gt)
\(\Rightarrow\widehat{BAC}=\widehat{ACD}\left(so.le.trong\right)\)
\(\Rightarrow\widehat{ACB}=\widehat{ACD}\)
=> CA là tia phân giác của góc C.
a: Ta có: NM là đường trung trực của BC
nên NM⊥BC tại M
mà NM⊥AD
nên BC//AD
Ta có: N là điểm nằm trên đường trung trực của BC
nên NB=NC
Xét ΔAND và ΔCNB có
\(\widehat{AND}=\widehat{CNB}\)
\(\widehat{ADN}=\widehat{CBN}\)
Do đó: ΔAND\(\sim\)ΔCNB
Suy ra: \(\dfrac{AN}{CN}=\dfrac{ND}{NB}\)
\(\Leftrightarrow AN=ND\)
Xét ΔAND có AN=ND
nên ΔNAD cân tại N
b: Ta có: NA+NC=AC
ND+NB=DB
mà NA=ND
và NC=NB
nên AC=DB
Xét tứ giác ABCD có AD//BC
nên ABCD là hình thang
mà AC=DB
nên ABCD là hình thang cân
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
Để chứng minh rằng EO là đường trung trực của AB trong hình thang cân ABCD, ta cần sử dụng một số kiến thức về hình học và các định lý liên quan.
Đầu tiên, do hình thang ABCD là hình thang cân, ta có AB // CD. Điều này có nghĩa là tam giác ABE và CDE là hai tam giác đồng dạng (có các cặp góc tương đồng và các cặp cạnh tương tỉ).
Tiếp theo, ta biết rằng đường chéo AC của hình thang cân là đường trung tuyến, có nghĩa là nó chia đôi đường chéo BD. Do đó, ta có AO = OC và BO = OD.
Giả sử EO không phải là đường trung trực của AB. Khi đó, ta có hai trường hợp xảy ra:
Trường hợp 1: EO nằm bên trong tam giác ABE. Trong trường hợp này, ta có EO cắt AB tại một điểm F. Vì tam giác ABE và CDE đồng dạng, nên ta cũng có EF // CD. Tuy nhiên, điều này mâu thuẫn với giả thiết AB // CD. Vậy trường hợp này không xảy ra.
Trường hợp 2: EO nằm bên ngoài tam giác ABE. Trong trường hợp này, ta có EO cắt AB tại một điểm F. Vì tam giác ABE và CDE đồng dạng, nên ta cũng có EF // CD. Tuy nhiên, điều này cũng mâu thuẫn với giả thiết AB // CD. Vậy trường hợp này cũng không xảy ra.
Vì hai trường hợp trên không xảy ra, ta kết luận rằng EO phải là đường trung trực của AB trong hình thang cân ABCD.
Hy vọng rằng giải thích trên đã giúp bạn hiểu và chứng minh được rằng EO là đường trung trực của AB trong hình thang cân ABCD.
Xét ΔABD và ΔBAC có
AB chung
BD=AC
AD=BC
=>ΔABD=ΔBAC
=>góc OAB=góc OBA
=>OA=OB
Xét ΔEDC có AB//DC
nên EA/AD=EB/BC
mà AD=BC
nên EA=EB
mà OA=OB
nên EO là trung trực của AB