\(\frac{5a}{2}\). Chứn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2021

1. Ta có:
ED,EAED,EA là tiếp tuyến của (O)

→ED⊥OD,EA⊥OA⇒ˆADE=ˆOAE=90o→ED⊥OD,EA⊥OA⇒ADE^=OAE^=90o

EDOAEDOA có ˆADE+ˆOAE=180oADE^+OAE^=180o

⇒EDOA⇒EDOA nội tiếp đường tròn đường kính (OE)

→ˆDOA+ˆDEA=180o→DOA^+DEA^=180o

Mà ABCDABCD là hình thang cân

→ˆDMA=ˆDBA+ˆCAB=2ˆDBA=ˆDOA→DMA^=DBA^+CAB^=2DBA^=DOA^

→ˆDMA+ˆAED=180o→AEDM→DMA^+AED^=180o→AEDM nội tiếp được trong một đường tròn

2. Từ câu 1

→ˆEMA=ˆEDA=ˆDBA=ˆCAB→EMA^=EDA^=DBA^=CAB^

Vì EDED là tiếp tuyến của (O),ABCDABCD là hình thang cân

→EM//AB→EM//AB

3. Ta có:

EM//AB→HK//AB→HMAB=DMDB=CMCA=MKABEM//AB→HK//AB→HMAB=DMDB=CMCA=MKAB

→MH=MK→M→MH=MK→M là trung điểm HK

image

26 tháng 2 2018

a) Do AB//CD nên áp dụng hệ quả định lý Ta let ta có:

\(\frac{AO}{OC}=\frac{OB}{OD}\) hay \(\frac{DO}{DB}=\frac{OC}{AC}\)

Xét tam giác ABD có OM//AB nên \(\frac{OM}{AB}=\frac{DO}{DB}\)

Tương tự \(\frac{ON}{AB}=\frac{CO}{CA}\)

Vậy nên \(\frac{OM}{AB}=\frac{ON}{AB}\Rightarrow OM=ON\)

b) Coi AB = 1, DC = k thì \(\frac{DO}{OB}=\frac{DC}{AB}=k\Rightarrow\frac{DO}{DB}=\frac{k}{k+1}\)

\(\Rightarrow OM=ON=\frac{k}{k+1}\Rightarrow MN=\frac{2k}{k+1}\)

Ta có \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{1}+\frac{1}{k}=\frac{k+1}{k}\)

\(\frac{2}{MN}=\frac{2}{\frac{2k}{k+1}}=\frac{k+1}{k}\)

Vậy nên \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)

c) Ta thấy ngay \(\Delta COD\sim\Delta AOB\left(g-g\right)\) theo tỉ lệ k ở câu b.

Vậy thì \(\frac{S_{COD}}{S_{AOB}}=\frac{2009^2}{2008^2}=\left(\frac{2009}{2008}\right)^2=k^2\Rightarrow k=\frac{2009}{2008}\)

Từ đó ta có \(\frac{OC}{OA}=\frac{DO}{OB}=\frac{2009}{2008}\)

Vậy thì \(\frac{S_{ADO}}{S_{AOB}}=\frac{2009}{2008}\Rightarrow S_{ADO}=\frac{2009}{2008}.2008^2=2009.2008\)

\(\frac{S_{BOC}}{S_{AOB}}=\frac{2009}{2008}\Rightarrow S_{BOC}=\frac{2009}{2008}.2008^2=2009.2008\)

Suy ra \(S_{ABCD}=S_{AOB}+S_{DOC}+S_{AOD}+S_{BOC}=2008^2+2009^2+2.2008.2009\)

\(=\left(2008+2009\right)^2=4017^2\left(cm^2\right)\)

27 tháng 3 2018

đúng rồi đó chị ơi

Kẻ AH vuông góc với BC, BK vuông góc với CD, đường chéo AC vuông góc với AD.
Đặt AH = AB = x => AH = x
Tam giác AHD = tam giác BKC ( c.h - g.n)
=> DH = CK = (10-x)/2
Vậy HC = Hk + CK = x + (10-x)/2 = (x-10)/2
Áp dụng hệ thức lượng trong tam giác ADC vuông tại A
Có AH^2 = DH.HC => x^2 = (10-x)/2 . (x-10)/2
=> 5x^2 = 20
=> x = 2√ 5
Vậy AH = 2√5

21 tháng 6 2016

tự vẽ hình nha.

vì ABCD là hình thang cân

=> DH=(CD- AB):2=(10-7):2=1,5

Mà AH/DH=4 => AH=4DH=4.1,5=6

S=(AB+CD).AH:2=(7+10).6:2=51 cm2

6 tháng 10 2018

AB // CD (gt) nên \(\widehat{A}+\widehat{D}=180^0\)

Mà \(\widehat{A}=\widehat{B}\Rightarrow\widehat{B}+\widehat{D}=180^0\)

Do đó: ABCD là tứ giác nội tiếp nên có 1 đường tròn đi qua cả 4 đỉnh A,B,C,D