\(ABCD\), đáy lớn \(CD = 5\),
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2019
https://i.imgur.com/0y1h4Eu.jpg
27 tháng 7 2019

undefined

7 tháng 8 2018

1.D \(\dfrac{1}{3}\left(\overrightarrow{BA}+\overrightarrow{BC}\right)=\dfrac{1}{3}\left(2\overrightarrow{BM}\right)=\dfrac{2}{3}\overrightarrow{BM}=\overrightarrow{BG}\)

2.A \(\overrightarrow{DA}+\overrightarrow{DB}+2.\overrightarrow{DC}=2.\overrightarrow{DM}+2.\overrightarrow{DC}=0\)

1 tháng 4 2017

a) Ta có, theo quy tắc ba điểm của phép trừ:

= - (1)

Mặt khác, = (2)

Từ (1) và (2) suy ra:

= - .

b) Ta có : = - (1)

= (2)

Từ (1) và (2) cho ta:

= - .

c) Ta có :

- = (1)

- = (2)

= (3)

Từ (1), (2), (3) suy ra đpcm.

d) - + = ( - ) + = + = + ( vì = ) =

Câu 1 : Cho tam giác ABC có D,M lần lượt là trung điểm của AB,CD. Đẳng thức nào sau đây đúng? A. \(\overrightarrow{MA}\) +2. \(\overrightarrow{MB}\) + \(\overrightarrow{MC}\) = 0 B. \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) + \(\overrightarrow{MC}\) + \(\overrightarrow{MD}\) = 0 C. \(\overrightarrow{MC}\) + \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) = 0 D. \(\overrightarrow{MC}\) + \(\overrightarrow{MA}\) + 2. \(\overrightarrow{BM}\) = 0 Câu 2 : Cho...
Đọc tiếp

Câu 1 : Cho tam giác ABC có D,M lần lượt là trung điểm của AB,CD. Đẳng thức nào sau đây đúng?

A. \(\overrightarrow{MA}\) +2. \(\overrightarrow{MB}\) + \(\overrightarrow{MC}\) = 0

B. \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) + \(\overrightarrow{MC}\) + \(\overrightarrow{MD}\) = 0

C. \(\overrightarrow{MC}\) + \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) = 0

D. \(\overrightarrow{MC}\) + \(\overrightarrow{MA}\) + 2. \(\overrightarrow{BM}\) = 0

Câu 2 : Cho vec-tơ \(\overrightarrow{b}\) \(\ne\) \(\overrightarrow{0}\) , \(\overrightarrow{a}\) = -2 . \(\overrightarrow{b}\) , \(\overrightarrow{c}\) = \(\overrightarrow{a}\) + \(\overrightarrow{b}\) . Khẳng định nào sau đây sai ?

A. \(\overrightarrow{b}\) = \(\overrightarrow{c}\)

B. \(\overrightarrow{b}\)\(\overrightarrow{c}\) ngược hướng

C. \(\overrightarrow{b}\)\(\overrightarrow{c}\) cùng phương

D. \(\overrightarrow{b}\)\(\overrightarrow{c}\) đối nhau

Câu 3 : Cho hình vuông ABCD cạnh a\(\sqrt{2}\) . Tính S= \(\left|2\overrightarrow{AD}+\overrightarrow{DB}\right|\) ?

A. 2a

B. a

C. a\(\sqrt{3}\)

D. a\(\sqrt{2}\)

1

Câu 1: B
Câu 2: A

Câu 3: C

1/ cho tam giác ABC và điểm M thỏa mãn \(2\overrightarrow{BM}\) +\(3\overrightarrow{CM}\)=\(\overrightarrow{0}\). Khẳng định nào sau đây đúng? a) BM=\(\frac{2}{5}.BC\) b) CM=\(\frac{3}{5}.BC\) c) M nằm ngoài cạnh BC d) M nằm trên cạnh BC 3/ cho hình vuông ABCD. GỌi M,N lần lượt là trung điểm của cạnh BC và CD.Phân tích \(\overrightarrow{AB}\)qua hai vectơ \(\overrightarrow{AM}\)và \(\overrightarrow{BN}\) ta...
Đọc tiếp

1/ cho tam giác ABC và điểm M thỏa mãn \(2\overrightarrow{BM}\) +\(3\overrightarrow{CM}\)=\(\overrightarrow{0}\). Khẳng định nào sau đây đúng?

a) BM=\(\frac{2}{5}.BC\) b) CM=\(\frac{3}{5}.BC\) c) M nằm ngoài cạnh BC d) M nằm trên cạnh BC

3/ cho hình vuông ABCD. GỌi M,N lần lượt là trung điểm của cạnh BC và CD.Phân tích \(\overrightarrow{AB}\)qua hai vectơ \(\overrightarrow{AM}\)\(\overrightarrow{BN}\) ta được

a) \(\overrightarrow{AB=}\)\(\frac{4}{5}.\overrightarrow{AM}\)+\(\frac{2}{5}.\overrightarrow{BN}\) b) \(\overrightarrow{AB=}\)\(-\frac{4}{5}.\overrightarrow{AM}\)\(-\frac{2}{5}.\overrightarrow{BN}\) c) \(\overrightarrow{AB=}\)\(\frac{4}{5}.\overrightarrow{AM}\)-\(\frac{2}{5}.\overrightarrow{BN}\) d) \(\overrightarrow{AB=}-\frac{4}{5}.\overrightarrow{AM}+\frac{2}{5}.\overrightarrow{BN}\)

4/cho tam giác ABC cân tại A, AB=a,\(\widehat{ABC}=30^O\).Độ dài của vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\) là :

a) \(\frac{a\sqrt{3}}{2}\) b) \(\frac{a}{2}\) c) a d) \(a\sqrt{3}\)

5/Cho hình thoi ABCD có cạnh bằng a và \(\widehat{BAD}=120^O\).Độ dài của vectơ \(\overrightarrow{CB}-\overrightarrow{BA}\)là:

a) \(a\sqrt{3}\) b) 0 c) a d) \(\frac{a\sqrt{3}}{2}\)

8/cho hình chữ nhật ABCD tâm O và AB= a, BC=\(a\sqrt{3}\).Độ dài của vectơ \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\)

a) 2a b) 3a c) \(\frac{a}{2}\) d) a

10/cho hình bình hành ABCD tâm O.Khi đó \(\overrightarrow{AC}+\overrightarrow{BD}\)

a) cùng hướng với \(\overrightarrow{AB}\) b) cùng hướng với \(\overrightarrow{AD}\) c) ngược hướng với \(\overrightarrow{AB}\) d) ngược hướng với \(\overrightarrow{AD}\)

11/Cho lục giác đều ABCDEF tâm O

a) \(\overrightarrow{AB}=\frac{1}{2}.\overrightarrow{FC}\) b) \(\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{0}\) c) \(\overrightarrow{AF}+\overrightarrow{CD}=\overrightarrow{0}\) d) \(\overrightarrow{AB}=\overrightarrow{DE}\)

12/ Cho hình bình hành ABCD tâm O.Gọi \(\overrightarrow{v}=\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}+4\overrightarrow{OD.}\)Khi đó

a) \(\overrightarrow{v}=\overrightarrow{AD}\) b) \(\overrightarrow{v}=\overrightarrow{AB}\) c) \(\overrightarrow{v}=2\overrightarrow{AB}\) d) \(\overrightarrow{v}=2\overrightarrow{AD}\)

13/Cho 3 diểm phân biệt A,B,C sao cho \(\overrightarrow{AB}\)\(\overrightarrow{AC}\) ngược hướng và AB=a, AC=b. Độ dài của vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\)

a) a+b b) a-b c)b-a d) \(\left|a-b\right|\)

0