Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AB=BC=\dfrac{AD}{2}=a\Rightarrow AD=2a\)
\(C\in CD:3x+4y-4=0\Rightarrow C\left(b;4-3b\right)\)
\(xét\Delta ABC\) \(vuông\) \(tạiB\Rightarrow AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)
\(\Delta ABC\) \(vuông\) \(cân\) \(tạiB\Rightarrow\) \(goscBAC=45^o\)
\(\Rightarrow góc\) \(DAC=45^o\)
\(xét\Delta ADC\) \(có:DC=\sqrt{AC^2+AD^2-2AC.AD.cos\left(45^o\right)}\)
\(=\sqrt{2a^2+4a^2-2.a^2\sqrt{2}.2.cos\left(45\right)}=a\sqrt{2}\)
\(\Rightarrow DC=AC\Rightarrow\Delta ADC\) \(cân\) \(tạiC\Rightarrow góc\left(DAC\right)=góc\left(ADC\right)=45^o\Rightarrow góc\left(ACD\right)=90^o\)
\(\overrightarrow{CA}=\left(-2-b;3b-4\right)\Rightarrow\overrightarrow{n_{ca}=}\left(4-3b;-2-b\right)\)
\(CD:3x+y-4=0\Rightarrow\overrightarrow{n}=\left(3;1\right)\)
\(\Rightarrow cos\left(90\right)=0=3\left(4-3b\right)-2-b=0\Leftrightarrow b=1\)
\(\Rightarrow C\left(1;1\right)\)
\(đặt:B\left(x;y\right)\left(y>0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BA}.\overrightarrow{BC}=\overrightarrow{0}\\AB=BC\end{matrix}\right.\) \(hệ\) \(pt\) \(ẩn\) \(x;y\Rightarrow B=\left(......\right)\)
a) \(\overrightarrow {BD} = \overrightarrow {AD} - \overrightarrow {AB} ;\;\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD} .\)
b) \(\overrightarrow {AB} .\overrightarrow {AD} = 4.6.\cos \widehat {BAD} = 24.\cos {60^o} = 12.\)
\(\begin{array}{l}\overrightarrow {AB} .\overrightarrow {AC} = \overrightarrow {AB} (\overrightarrow {AB} + \overrightarrow {AD} ) = {\overrightarrow {AB} ^2} + \overrightarrow {AB} .\overrightarrow {AD} = {4^2} + 12 = 28.\\\overrightarrow {BD} .\overrightarrow {AC} = (\overrightarrow {AD} - \overrightarrow {AB} )(\overrightarrow {AB} + \overrightarrow {AD} ) = {\overrightarrow {AD} ^2} - {\overrightarrow {AB} ^2} = {6^2} - {4^2} = 20.\end{array}\)
c) Áp dụng định lí cosin cho tam giác ABD ta có:
\(\begin{array}{l}\quad \;B{D^2} = A{B^2} + A{D^2} - 2.AB.AD.\cos A\\ \Leftrightarrow B{D^2} = {4^2} + {6^2} - 2.4.6.\cos {60^o} = 28\\ \Leftrightarrow BD = 2\sqrt 7 .\end{array}\)
Áp dụng định lí cosin cho tam giác ABC ta có:
\(\begin{array}{l}\quad \;A{C^2} = A{B^2} + B{C^2} - 2.AB.BC.\cos B\\ \Leftrightarrow A{C^2} = {4^2} + {6^2} - 2.4.6.\cos {120^o} = 76\\ \Leftrightarrow AC = 2\sqrt {19} .\end{array}\)
\(AC^2+BD^2=2\left(AB^2+AD^2\right)\)
\(\Leftrightarrow AB^2+AC^2=5BD^2\)
Áp dụng BĐT Cauchy:
\(cosBAD=\dfrac{AB^2+AD^2-BD^2}{2AB.AD}\ge\dfrac{4BD^2}{AB^2+AD^2}=\dfrac{4BD^2}{5BD^2}=\dfrac{4}{5}\)
\(\Rightarrow sinBAD=\sqrt{1-cos^2BAD}\le\sqrt{1-\dfrac{16}{25}}=\dfrac{3}{5}\)
\(\Rightarrow\dfrac{1}{sinBAD}\ge\dfrac{5}{3}\)
\(\Rightarrow cotBAD=\dfrac{cosBAD}{sinBAD}\ge\dfrac{4}{5}.\dfrac{5}{3}=\dfrac{4}{3}\)
Định lý hàm cosin:
\(BD=\sqrt{AB^2+AD^2-2AB.AD.cos\widehat{BAD}}=2\sqrt{7}\)
Ta có :
\(\widehat{ABD}=\widehat{ADB}\)
\(\widehat{ABD}=\widehat{BDC}\)
\(\Rightarrow\widehat{BDC}=\widehat{ADB}\)
Suy ra \(\widehat{BAD}=\pi-2\widehat{BDC}\)
Từ đó ta có :
\(\tan\widehat{BAD}=-\tan2\widehat{BDC}=-\dfrac{2\tan\widehat{BDC}}{1-\tan^2\widehat{BDC}}=-\dfrac{2.\dfrac{3}{4}}{1-9\cdot16}=-\dfrac{3}{2}.\dfrac{16}{7}=-\dfrac{24}{7}\)Vì \(\dfrac{\pi}{2}< \widehat{BAD}< \pi\) nên \(\cos\widehat{BAD}< 0\)
Do đó : \(\cos\widehat{BAD}=-\dfrac{1}{\sqrt{1+\tan^2\widehat{BAD}}}=-\dfrac{1}{\sqrt{1+\dfrac{576}{49}}}=-\dfrac{7}{25}\)
\(\sin\widehat{BAD}=\cos\widehat{BAD}\tan\widehat{BAD}=\dfrac{-7}{25}.\dfrac{-24}{7}=\dfrac{24}{25}\)