Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\widehat{ABD}=\widehat{ADB}\)
\(\widehat{ABD}=\widehat{BDC}\)
\(\Rightarrow\widehat{BDC}=\widehat{ADB}\)
Suy ra \(\widehat{BAD}=\pi-2\widehat{BDC}\)
Từ đó ta có :
\(\tan\widehat{BAD}=-\tan2\widehat{BDC}=-\dfrac{2\tan\widehat{BDC}}{1-\tan^2\widehat{BDC}}=-\dfrac{2.\dfrac{3}{4}}{1-9\cdot16}=-\dfrac{3}{2}.\dfrac{16}{7}=-\dfrac{24}{7}\)Vì \(\dfrac{\pi}{2}< \widehat{BAD}< \pi\) nên \(\cos\widehat{BAD}< 0\)
Do đó : \(\cos\widehat{BAD}=-\dfrac{1}{\sqrt{1+\tan^2\widehat{BAD}}}=-\dfrac{1}{\sqrt{1+\dfrac{576}{49}}}=-\dfrac{7}{25}\)
\(\sin\widehat{BAD}=\cos\widehat{BAD}\tan\widehat{BAD}=\dfrac{-7}{25}.\dfrac{-24}{7}=\dfrac{24}{25}\)
\(AC=\sqrt{AB^2+BC^2}=a\sqrt{5}\)
\(BD=\sqrt{AD^2+AB^2}=a\sqrt{2}\)
\(\overrightarrow{AC}.\overrightarrow{BD}=\left(\overrightarrow{AB}+\overrightarrow{BC}\right)\left(\overrightarrow{BA}+\overrightarrow{AD}\right)\)
\(=-\overrightarrow{AB}^2+\overrightarrow{AB}.\overrightarrow{AD}+\overrightarrow{BC}.\overrightarrow{BA}+\overrightarrow{BC}.\overrightarrow{AD}\)
\(=-\overrightarrow{AB}^2+\overrightarrow{AD}.2\overrightarrow{AD}=-\overrightarrow{AB}^2+2\overrightarrow{AD}^2\)
\(=-a^2+2a^2=a^2\)
\(cos\left(\overrightarrow{AC};\overrightarrow{BD}\right)=\dfrac{\overrightarrow{AC}.\overrightarrow{BD}}{AC.BD}=\dfrac{a^2}{a\sqrt{2}.a\sqrt{5}}=\dfrac{1}{\sqrt{10}}\)
Chọn D.
Phương án A: = AB.DC.cos00
= 8a2 nên loại A.
Phương án B: suy ra nên loại B.
Phương án C: suy ra nên loại C.
Phương án D: không vuông góc với suy ra nên chọn D.
\(\overrightarrow{AB}.\overrightarrow{CD}=\overrightarrow{AB}\left(\overrightarrow{CB}+\overrightarrow{BA}+\overrightarrow{AD}\right)\)
\(=\overrightarrow{AB}.\overrightarrow{CB}+\overrightarrow{AB}.\overrightarrow{BA}+\overrightarrow{AB}.\overrightarrow{AD}\)
\(=0-\overrightarrow{AB}^2+0=-4a^2\)
1.
Dựng \(\overrightarrow{DB'}=\overrightarrow{CB}\)
\(k\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{DB}\)
\(=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{DA}+\overrightarrow{AB}\)
\(=2\overrightarrow{AB}+\overrightarrow{B'D}+\overrightarrow{DA}\)
\(=2\overrightarrow{AB}+\overrightarrow{B'A}\)
\(=2\overrightarrow{AB}+2\overrightarrow{AB}=4\overrightarrow{AB}\)
\(\Rightarrow k=4\)
Gọi M là trung điểm IB
\(\left|\overrightarrow{AB}+\overrightarrow{AI}\right|=\left|2\overrightarrow{AM}\right|=2AM\)
Ta có \(\overrightarrow{AM}^2=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2=MI^2+IA^2-2MI.IA.cos90^o=\dfrac{1}{16}a^2+\dfrac{3}{4}a^2=\dfrac{13}{16}a^2\)
\(\Rightarrow AM=\dfrac{\sqrt{13}}{4}a\Rightarrow\left|\overrightarrow{AB}+\overrightarrow{AI}\right|=\dfrac{\sqrt{13}}{2}a\)
Từ đó ta có: