K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

Lượng giác

Ta có :

\(\widehat{ABD}=\widehat{ADB}\)

\(\widehat{ABD}=\widehat{BDC}\)

\(\Rightarrow\widehat{BDC}=\widehat{ADB}\)

Suy ra \(\widehat{BAD}=\pi-2\widehat{BDC}\)

Từ đó ta có :

\(\tan\widehat{BAD}=-\tan2\widehat{BDC}=-\dfrac{2\tan\widehat{BDC}}{1-\tan^2\widehat{BDC}}=-\dfrac{2.\dfrac{3}{4}}{1-9\cdot16}=-\dfrac{3}{2}.\dfrac{16}{7}=-\dfrac{24}{7}\)\(\dfrac{\pi}{2}< \widehat{BAD}< \pi\) nên \(\cos\widehat{BAD}< 0\)
Do đó : \(\cos\widehat{BAD}=-\dfrac{1}{\sqrt{1+\tan^2\widehat{BAD}}}=-\dfrac{1}{\sqrt{1+\dfrac{576}{49}}}=-\dfrac{7}{25}\)

\(\sin\widehat{BAD}=\cos\widehat{BAD}\tan\widehat{BAD}=\dfrac{-7}{25}.\dfrac{-24}{7}=\dfrac{24}{25}\)

NV
4 tháng 1 2021

\(AC=\sqrt{AB^2+BC^2}=a\sqrt{5}\)

\(BD=\sqrt{AD^2+AB^2}=a\sqrt{2}\)

\(\overrightarrow{AC}.\overrightarrow{BD}=\left(\overrightarrow{AB}+\overrightarrow{BC}\right)\left(\overrightarrow{BA}+\overrightarrow{AD}\right)\)

\(=-\overrightarrow{AB}^2+\overrightarrow{AB}.\overrightarrow{AD}+\overrightarrow{BC}.\overrightarrow{BA}+\overrightarrow{BC}.\overrightarrow{AD}\)

\(=-\overrightarrow{AB}^2+\overrightarrow{AD}.2\overrightarrow{AD}=-\overrightarrow{AB}^2+2\overrightarrow{AD}^2\)

\(=-a^2+2a^2=a^2\)

\(cos\left(\overrightarrow{AC};\overrightarrow{BD}\right)=\dfrac{\overrightarrow{AC}.\overrightarrow{BD}}{AC.BD}=\dfrac{a^2}{a\sqrt{2}.a\sqrt{5}}=\dfrac{1}{\sqrt{10}}\)

2 tháng 5 2018

Chọn A.

Từ giả thiết ta suy ra: 

Do đó 

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

6 tháng 6 2016

Chiều cao của hình thang là :

40 x 2 : 5 = 16 ( cm )

Diện tích của hình thang là :

( 27 + 48 ) x 16 : 2 = 600 ( cm2 )

đáp số : 600 cm2

6 tháng 6 2016

Chiều cao của hình thang là:

40.2 : 5 = 16 (cm)

Diện tích hình thang là:

(27 + 48) .16 : 2 = 600 (cm2

Đáp số: 600 cm2