Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vẽ đường cao $AH$ và $BE$
Do $ABCD$ là hình thang cân nên dễ chứng minh \(\triangle ADH=\triangle BCE\)
\(\Rightarrow DH=CE\)
Tứ giác $ABEH$ có các góc đều là góc vuông nên là hình chữ nhật. Do đó \(a=AB=HE\)
Từ hai điều trên suy ra \(a=AB=HE=HC-CE=HC-HD\)
Ta có:
\(\cot \alpha=\frac{HC}{AH}\)
\(\cot \beta=\frac{DH}{AH}\)
\(\Rightarrow \left\{\begin{matrix} \cot \alpha-\cot \beta=\frac{HC-DH}{AH}\\ \cot \alpha+\cot \beta=\frac{HC+DH}{AH}\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \cot \alpha-\cot \beta=\frac{a}{AH}\Rightarrow AH=\frac{a}{\cot \alpha-\cot \beta}\\ \cot \alpha+\cot \beta=\frac{DC}{AH}\end{matrix}\right.\)
\(\Rightarrow DC=\frac{a(\cot \alpha+\cot \beta)}{\cot \alpha-\cot \beta}\)
Vậy \(S_{ABCD}=\frac{(AB+CD).AH}{2}=\frac{a^2\cot \alpha}{(cot \alpha-\cot \beta)^2}\)
b) Áp dụng vào bài toán:
\(S=\frac{a^2\cot \alpha}{(cot\alpha-\cot \beta)^2}\approx 51,62\) cm2
@Trùm Trường : cảm ơn bạn, mình không để ý nên bấm máy nhầm :)
Hãy tích cho tui đi
khi bạn tích tui
tui không tích lại bạn đâu
THANKS
A B C M H
Kẻ đường cao AH ; Vì AB < AC => BH < HC=> H thuộc BM
Ta có: \(\sin\alpha=\frac{AB}{BC};\cos\alpha=\frac{AC}{BC};\sin\beta=\frac{AH}{AM}\)
=> \(\left(\sin\alpha+\cos\alpha\right)^2=\left(\frac{AB}{BC}+\frac{AC}{BC}\right)^2=\frac{AB^2}{BC^2}+\frac{AC^2}{BC^2}+\frac{2AB.AC}{BC^2}=1+\frac{2AB.AC}{BC^2}\)
Mà theo hệ thức lượng: \(AB^2=BC.BH;AC^2=CB.CH\)
=> \(\frac{2AB.AC}{BC^2}=2.\frac{AB}{BC}.\frac{AC}{BC}=\frac{2BH.CH}{AB.AC}=\frac{2AH^2}{AB.AC}\)
Ta cần chứng minh: \(\frac{2AH^2}{AB.AC}=\frac{AH}{AM}\Leftrightarrow2AH.AM=AB.AC\Leftrightarrow AH.BC=AB.AC\)đúng
Vậy \(1+\frac{2AB.AC}{BC^2}=1+\frac{AH}{AM}\)
=> Có điều cần phải cm