Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình tự vẽ nha bạn
kẻ đường cao AH=> tam giác AHD vuông cân tại H
=> AH=DH
áp dụng Pitago => AH=DH=4cm
tương tự kẻ đường caoBK=> tam giác BKC vuông cân tại K
=> BK=KC
áp dụng Pitago =>BK=KC=4cm
ta có AB//DC ,BK vuông góc với DC=> AB vuông góc với BK
tứ giác ABKH có góc ABK=góc BKH=góc KHA=90 độ
=> T/g ABKH là hcn=> AB=HK=CD-(DH+KC)=14-(4+4)=6m
S ABCD=(AB+CD).AH:2=(6+14).4:2=40 cm vuông
A B C D E F
Kẻ \(AE,BF⊥DC\)
Theo đề bài ta có \(\widehat{ADE}=\widehat{BCF}=45^0\Rightarrow\Delta ADE\)và \(\Delta BCF\) vuông cân
\(ÀD=BC=\frac{4\sqrt{2}}{5}\)
Xét \(\Delta ADE\) có \(AE^2+DE^2=AD^2\Rightarrow2AE^2=AD^2\Rightarrow AE=\sqrt{\frac{AD^2}{2}}=\frac{4}{5}\)
Xét \(\Delta BCF\)có \(BF^2+CF^2=BC^2\Rightarrow2BF^2=BC^2\Rightarrow BF=\sqrt{\frac{BC^2}{2}}=\frac{4}{5}\)
Ta có \(AB=EF\Rightarrow AB=CD-DE-CF=3.2-\frac{4}{5}-\frac{4}{5}=\frac{8}{5}\)
ke duogn cao AH =>tam giac AHD la tam giac can => 32=2.DH^2=>DH=4 ha duong cao BK =>HK=6(1) ta ca ABHK la hinh chu nhat =>AB=6=>dien tich ABCD=(AB+DC).4/2 =40 (cm^2)