Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì ABCD là hình thang cân
=> B = A = 120°
=> Mà AB//CD
=> A + D = 180° ( trong cùng phía)
=> D = C = 60°
Đây là bài toán đầy trí tuệ, nhưng k khó,bn để ý đầu bài cho gócC =60o
nên cạnh đay DA=2CD
VÂY AB+BC+CD+DA = 20cm
mà AB=BC= CD = DA/2 =20/5=4
DA =4.2=8cm ; AB=BC=CD=4cm
( chắc bn viết nhầm AB=BC=CD)
Góc ACD vuông, góc D=60 độ thì CAD=30 độ và tam giác ACD là nửa tam giác đều, hay AD=2CD.
Góc BAC=CAD=30 độ thì BAD= 60 độ, hình thang này cân, và AB=CD
Góc BCD bù góc D nên BCD=120 độ, vậy BCA=30 độ. Tam giác ABC cân, hay AB=BC.
Tóm lại chu vi hình thang = 5 CD=2,5 AD.
AD=20/2,5=8cm
Hình vẽ ;
A D B C E 60 o
a, Chứng minh tứ giác ABCD là hình thang cân .
Xét tam giác ADC ( góc ACD = 90 độ do AC\(⊥\)CD-gt) ta có :
\(\widehat{D}+\widehat{CAD}=90^o\)
\(\Rightarrow\widehat{CAD}=90^o-\widehat{D}=90^o-60^o=30^o\)
mà \(\widehat{CAD}=\widehat{BAC}\left(gt\right)\Rightarrow\widehat{BAC}=30^o\)
Ta có : \(\widehat{BAD}=\widehat{BAC}+\widehat{CAD}=30^o+30^o=60^o\)
Xét hình thang ABCD , ta có :
\(\widehat{BAD}=\widehat{D}=60^o\)
\(\Rightarrow\)tứ giác ABCD là hình thang cân.
b, Tính AD.
Kéo dài AB và DC cắt nhau tại E .
Xét tam giác AED , ta có : \(\widehat{BAC}=\widehat{CAD}\left(gt\right)\)
\(AC⊥CD\)(gt)
=> tam giác AED là tam giác cân .
mà góc D = 60 độ (gt)
=> tam giác AED là tam giác đều
=>\(\hept{\begin{cases}AB=CD=\frac{1}{2}AD\left(1\right)\\CE=CD\end{cases}}\)
Xét tam giác ADE , ta có :
BC//AD( do ABCD là hình thang )
CE=CD( cmt)
=> BC là đường trung bình của tam giác ADE
=>\(BC=\frac{1}{2}AD\left(2\right)\)
Từ (1) và (2) => BC=CD=AB=\(\frac{1}{2}.AD\)
Theo giả thiết , ta có :
AB+BC+CD+AD=20
=>\(\frac{1}{2}AD+\frac{1}{2}AD+\frac{1}{2}AD+AD=20\)
=>\(\frac{5}{2}AD=20\Rightarrow AD=8\left(cm\right)\)
Nên nhớ hình vẽ chỉ mang tính minh họa cho bài làm nên ko được đẹp lắm đâu các bạn thông cảm cho.
Trong bài mk làm hơi tắt có j hk hiểu nhắn tin hỏi mk .