K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2022

a, Ta có : \(DC=2AB=2.6=12\left(cm\right)\)

\(\Rightarrow S_{ABCD}=\dfrac{\left(AB+CD\right).AH}{2}=\dfrac{\left(6+12\right).4}{2}=36\left(cm^2\right)\)

b, Xét ΔAHD và ΔBKC có :

\(\widehat{AHD}=\widehat{BKC}=90^0\)

\(\widehat{D}=\widehat{C}\left(ABCD\cdot là\cdot hình\cdot thang\cdot cân\right)\)

\(\Rightarrow\Delta AHD\sim\Delta BKC\left(g-g\right)\)

c, Ta có : \(\Delta AHD\sim\Delta BKC\left(cmt\right)\)

\(\Rightarrow\dfrac{AH}{BK}=\dfrac{AD}{BC}\)

\(\Rightarrow AH.BC=AD.BK\left(đpcm\right)\)

a: DC=6*2=12cm

S ABCD=1/2(AB+CD)*AH

=1/2*4*(6+12)=2*18=36cm2

b: Xét ΔAHD vuông tại H và ΔBKC vuông tại K có

góc D=góc C

=>ΔAHD đồng dạng với ΔBKC

c: ΔAHD đồng dạng với ΔBKC

=>AD/BC=AH/BK

=>AH*BC=AD*BK

Bài 2: 

a: Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

=>BFEC là hình thang

mà CF=BE

nên BFEC là hình thang cân

c: Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC

25 tháng 9 2021

1562140463_11.pngđây nhé